Uniform-precision neural network quantization has gained popularity since it simplifies densely packed arithmetic unit for high computing capability. However, it ignores heterogeneous sensitivity to the impact of quantization errors across the layers, resulting in sub-optimal inference accuracy. This work proposes a novel neural architecture search called neural channel expansion that adjusts the network structure to alleviate accuracy degradation from ultra-low uniform-precision quantization. The proposed method selectively expands channels for the quantization sensitive layers while satisfying hardware constraints (e.g., FLOPs, PARAMs). Based on in-depth analysis and experiments, we demonstrate that the proposed method can adapt several popular networks channels to achieve superior 2-bit quantization accuracy on CIFAR10 and ImageNet. In particular, we achieve the best-to-date Top-1/Top-5 accuracy for 2-bit ResNet50 with smaller FLOPs and the parameter size.
Spiking neural networks (SNNs) offer a promising energy-efficient alternative to artificial neural networks, due to their event-driven spiking computation. However, state-of-the-art deep SNNs (including Spikformer and SEW ResNet) suffer from non-spike computations (integer-float multiplications) caused by the structure of their residual connection. These non-spike computations increase SNNs' power consumption and make them unsuitable for deployment on mainstream neuromorphic hardware, which only supports spike operations. In this paper, we propose a hardware-friendly spike-driven residual learning architecture for SNNs to avoid non-spike computations. Based on this residual design, we develop Spikingformer, a pure transformer-based spiking neural network. We evaluate Spikingformer on ImageNet, CIFAR10, CIFAR100, CIFAR10-DVS and DVS128 Gesture datasets, and demonstrate that Spikingformer outperforms the state-of-the-art in directly trained pure SNNs as a novel advanced backbone (75.85$\%$ top-1 accuracy on ImageNet, + 1.04$\%$ compared with Spikformer). Furthermore, our experiments verify that Spikingformer effectively avoids non-spike computations and significantly reduces energy consumption by 57.34$\%$ compared with Spikformer on ImageNet. To our best knowledge, this is the first time that a pure event-driven transformer-based SNN has been developed.
In this paper, we propose a two-stage heterogeneous lightweight network for monaural speech enhancement. Specifically, we design a novel two-stage framework consisting of a coarse-grained full-band mask estimation stage and a fine-grained low-frequency refinement stage. Instead of using a hand-designed real-valued filter, we use a novel learnable complex-valued rectangular bandwidth (LCRB) filter bank as an extractor of compact features. Furthermore, considering the respective characteristics of the proposed two-stage task, we used a heterogeneous structure, i.e., a U-shaped subnetwork as the backbone of CoarseNet and a single-scale subnetwork as the backbone of FineNet. We conducted experiments on the VoiceBank + DEMAND and DNS datasets to evaluate the proposed approach. The experimental results show that the proposed method outperforms the current state-of-the-art methods, while maintaining relatively small model size and low computational complexity.
Real-time semantic segmentation is a challenging task that requires high-accuracy models with low-inference times. Implementing these models on embedded systems is limited by hardware capability and memory usage, which produces bottlenecks. We propose an efficient model for real-time semantic segmentation called JetSeg, consisting of an encoder called JetNet, and an improved RegSeg decoder. The JetNet is designed for GPU-Embedded Systems and includes two main components: a new light-weight efficient block called JetBlock, that reduces the number of parameters minimizing memory usage and inference time without sacrificing accuracy; a new strategy that involves the combination of asymmetric and non-asymmetric convolutions with depthwise-dilated convolutions called JetConv, a channel shuffle operation, light-weight activation functions, and a convenient number of group convolutions for embedded systems, and an innovative loss function named JetLoss, which integrates the Precision, Recall, and IoUB losses to improve semantic segmentation and reduce computational complexity. Experiments demonstrate that JetSeg is much faster on workstation devices and more suitable for Low-Power GPU-Embedded Systems than existing state-of-the-art models for real-time semantic segmentation. Our approach outperforms state-of-the-art real-time encoder-decoder models by reducing 46.70M parameters and 5.14% GFLOPs, which makes JetSeg up to 2x faster on the NVIDIA Titan RTX GPU and the Jetson Xavier than other models. The JetSeg code is available at //github.com/mmontielpz/jetseg.
A key challenge in machine learning is to generalize from training data to an application domain of interest. This work generalizes the recently-proposed mixture invariant training (MixIT) algorithm to perform unsupervised learning in the multi-channel setting. We use MixIT to train a model on far-field microphone array recordings of overlapping reverberant and noisy speech from the AMI Corpus. The models are trained on both supervised and unsupervised training data, and are tested on real AMI recordings containing overlapping speech. To objectively evaluate our models, we also use a synthetic multi-channel AMI test set. Holding network architectures constant, we find that a fine-tuned semi-supervised model yields the largest improvement to SI-SNR and to human listening ratings across synthetic and real datasets, outperforming supervised models trained on well-matched synthetic data. Our results demonstrate that unsupervised learning through MixIT enables model adaptation on both single- and multi-channel real-world speech recordings.
Sparse Neural Networks (SNNs) can potentially demonstrate similar performance to their dense counterparts while saving significant energy and memory at inference. However, the accuracy drop incurred by SNNs, especially at high pruning ratios, can be an issue in critical deployment conditions. While recent works mitigate this issue through sophisticated pruning techniques, we shift our focus to an overlooked factor: hyperparameters and activation functions. Our analyses have shown that the accuracy drop can additionally be attributed to (i) Using ReLU as the default choice for activation functions unanimously, and (ii) Fine-tuning SNNs with the same hyperparameters as dense counterparts. Thus, we focus on learning a novel way to tune activation functions for sparse networks and combining these with a separate hyperparameter optimization (HPO) regime for sparse networks. By conducting experiments on popular DNN models (LeNet-5, VGG-16, ResNet-18, and EfficientNet-B0) trained on MNIST, CIFAR-10, and ImageNet-16 datasets, we show that the novel combination of these two approaches, dubbed Sparse Activation Function Search, short: SAFS, results in up to 15.53%, 8.88%, and 6.33% absolute improvement in the accuracy for LeNet-5, VGG-16, and ResNet-18 over the default training protocols, especially at high pruning ratios. Our code can be found at //github.com/automl/SAFS
The likelihood ratio is a crucial quantity for statistical inference in science that enables hypothesis testing, construction of confidence intervals, reweighting of distributions, and more. Many modern scientific applications, however, make use of data- or simulation-driven models for which computing the likelihood ratio can be very difficult or even impossible. By applying the so-called ``likelihood ratio trick,'' approximations of the likelihood ratio may be computed using clever parametrizations of neural network-based classifiers. A number of different neural network setups can be defined to satisfy this procedure, each with varying performance in approximating the likelihood ratio when using finite training data. We present a series of empirical studies detailing the performance of several common loss functionals and parametrizations of the classifier output in approximating the likelihood ratio of two univariate and multivariate Gaussian distributions as well as simulated high-energy particle physics datasets.
Phase aberration is one of the primary sources of image quality degradation in ultrasound, which is induced by spatial variations in sound speed across the heterogeneous medium. This effect disrupts transmitted waves and prevents coherent summation of echo signals, resulting in suboptimal image quality. In real experiments, obtaining non-aberrated ground truths can be extremely challenging, if not infeasible. It hinders the performance of deep learning-based phase aberration correction techniques due to sole reliance on simulated data and the presence of domain shift between simulated and experimental data. Here, for the first time, we propose a deep learning-based method that does not require reference data to compensate for the phase aberration effect. We train a network wherein both input and target output are randomly aberrated radio frequency (RF) data. Moreover, we demonstrate that a conventional loss function such as mean square error is inadequate for training the network to achieve optimal performance. Instead, we propose an adaptive mixed loss function that employs both B-mode and RF data, resulting in more efficient convergence and enhanced performance. Source code is available at \url{//code.sonography.ai}.
Large-scale language models (LLMs) have demonstrated impressive performance, but their deployment presents challenges due to their significant memory usage. This issue can be alleviated through quantization. In this paper, we identify that the challenge in quantizing activations in LLMs arises from varying ranges across channels, rather than solely the presence of outliers. To address this challenge, we introduce a quantization method called RPTQ, which utilizes a reorder-based approach. By rearranging the channels and quantizing them in clusters, RPTQ effectively mitigates the impact of range differences between channels. To minimize the overhead of the reorder operation, we fuse it into the layer norm operation and weights in linear layers. In our experiments, RPTQ achieved a significant breakthrough by utilizing 3-bit activation in LLMs for the first time, resulting in a substantial reduction in memory usage. For instance, quantizing OPT-175b can lead to a memory consumption reduction of up to 80%.
Cross-modal representation learning has become a new normal for bridging the semantic gap between text and visual data. Learning modality agnostic representations in a continuous latent space, however, is often treated as a black-box data-driven training process. It is well-known that the effectiveness of representation learning depends heavily on the quality and scale of training data. For video representation learning, having a complete set of labels that annotate the full spectrum of video content for training is highly difficult if not impossible. These issues, black-box training and dataset bias, make representation learning practically challenging to be deployed for video understanding due to unexplainable and unpredictable results. In this paper, we propose two novel training objectives, likelihood and unlikelihood functions, to unroll semantics behind embeddings while addressing the label sparsity problem in training. The likelihood training aims to interpret semantics of embeddings beyond training labels, while the unlikelihood training leverages prior knowledge for regularization to ensure semantically coherent interpretation. With both training objectives, a new encoder-decoder network, which learns interpretable cross-modal representation, is proposed for ad-hoc video search. Extensive experiments on TRECVid and MSR-VTT datasets show the proposed network outperforms several state-of-the-art retrieval models with a statistically significant performance margin.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.