亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Large language models (LLMs) with enormous pre-training tokens and parameters emerge diverse abilities, including math reasoning, code generation, and instruction following. These abilities are further enhanced by supervised fine-tuning (SFT). While the open-source community has explored ad-hoc SFT for enhancing individual capabilities, proprietary LLMs exhibit versatility across various skills. Therefore, understanding the facilitation of multiple abilities via SFT is paramount. In this study, we specifically focuses on the interplay of data composition between mathematical reasoning, code generation, and general human-aligning abilities during SFT. We propose four intriguing research questions to explore the association between model performance and various factors including data amount, composition ratio, model size and SFT strategies. Our experiments reveal that distinct capabilities scale differently and larger models generally show superior performance with same amount of data. Mathematical reasoning and code generation consistently improve with increasing data amount, whereas general abilities plateau after roughly a thousand samples. Moreover, we observe data composition appears to enhance various abilities under limited data conditions, yet can lead to performance conflicts when data is plentiful. Our findings also suggest the amount of composition data influences performance more than the composition ratio. In analysis of SFT strategies, we find that sequentially learning multiple skills risks catastrophic forgetting. Our proposed Dual-stage Mixed Fine-tuning (DMT) strategy offers a promising solution to learn multiple abilities with different scaling patterns.

相關內容

Large language models (LLMs) suffer from catastrophic forgetting during continual learning. Conventional rehearsal-based methods rely on previous training data to retain the model's ability, which may not be feasible in real-world applications. When conducting continual learning based on a publicly-released LLM checkpoint, the availability of the original training data may be non-existent. To address this challenge, we propose a framework called Self-Synthesized Rehearsal (SSR) that uses the LLM to generate synthetic instances for rehearsal. Concretely, we first employ the base LLM for in-context learning to generate synthetic instances. Subsequently, we utilize the latest LLM to refine the instance outputs based on the synthetic inputs, preserving its acquired ability. Finally, we select diverse high-quality synthetic instances for rehearsal in future stages. Experimental results demonstrate that SSR achieves superior or comparable performance compared to conventional rehearsal-based approaches while being more data-efficient. Besides, SSR effectively preserves the generalization capabilities of LLMs in general domains.

Most models for weakly supervised video anomaly detection (WS-VAD) rely on multiple instance learning, aiming to distinguish normal and abnormal snippets without specifying the type of anomaly. The ambiguous nature of anomaly definitions across contexts introduces bias in detecting abnormal and normal snippets within the abnormal bag. Taking the first step to show the model why it is anomalous, a novel framework is proposed to guide the learning of suspected anomalies from event prompts. Given a textual prompt dictionary of potential anomaly events and the captions generated from anomaly videos, the semantic anomaly similarity between them could be calculated to identify the suspected anomalous events for each video snippet. It enables a new multi-prompt learning process to constrain the visual-semantic features across all videos, as well as provides a new way to label pseudo anomalies for self-training. To demonstrate effectiveness, comprehensive experiments and detailed ablation studies are conducted on four datasets, namely XD-Violence, UCF-Crime, TAD, and ShanghaiTech. Our proposed model outperforms most state-of-the-art methods in terms of AP or AUC (82.6\%, 87.7\%, 93.1\%, and 97.4\%). Furthermore, it shows promising performance in open-set and cross-dataset cases.

Pre-trained language models (PLMs) leverage chains-of-thought (CoT) to simulate human reasoning and inference processes, achieving proficient performance in multi-hop QA. However, a gap persists between PLMs' reasoning abilities and those of humans when tackling complex problems. Psychological studies suggest a vital connection between explicit information in passages and human prior knowledge during reading. Nevertheless, current research has given insufficient attention to linking input passages and PLMs' pre-training-based knowledge from the perspective of human cognition studies. In this study, we introduce a Prompting Explicit and Implicit knowledge (PEI) framework, which uses prompts to connect explicit and implicit knowledge, aligning with human reading process for multi-hop QA. We consider the input passages as explicit knowledge, employing them to elicit implicit knowledge through unified prompt reasoning. Furthermore, our model incorporates type-specific reasoning via prompts, a form of implicit knowledge. Experimental results show that PEI performs comparably to the state-of-the-art on HotpotQA. Ablation studies confirm the efficacy of our model in bridging and integrating explicit and implicit knowledge.

Explaining stock predictions is generally a difficult task for traditional non-generative deep learning models, where explanations are limited to visualizing the attention weights on important texts. Today, Large Language Models (LLMs) present a solution to this problem, given their known capabilities to generate human-readable explanations for their decision-making process. However, the task of stock prediction remains challenging for LLMs, as it requires the ability to weigh the varying impacts of chaotic social texts on stock prices. The problem gets progressively harder with the introduction of the explanation component, which requires LLMs to explain verbally why certain factors are more important than the others. On the other hand, to fine-tune LLMs for such a task, one would need expert-annotated samples of explanation for every stock movement in the training set, which is expensive and impractical to scale. To tackle these issues, we propose our Summarize-Explain-Predict (SEP) framework, which utilizes a self-reflective agent and Proximal Policy Optimization (PPO) to let a LLM teach itself how to generate explainable stock predictions in a fully autonomous manner. The reflective agent learns how to explain past stock movements through self-reasoning, while the PPO trainer trains the model to generate the most likely explanations from input texts. The training samples for the PPO trainer are also the responses generated during the reflective process, which eliminates the need for human annotators. Using our SEP framework, we fine-tune a LLM that can outperform both traditional deep-learning and LLM methods in prediction accuracy and Matthews correlation coefficient for the stock classification task. To justify the generalization capability of our framework, we further test it on the portfolio construction task, and demonstrate its effectiveness through various portfolio metrics.

Entity abstract summarization aims to generate a coherent description of a given entity based on a set of relevant Internet documents. Pretrained language models (PLMs) have achieved significant success in this task, but they may suffer from hallucinations, i.e. generating non-factual information about the entity. To address this issue, we decompose the summary into two components: Facts that represent the factual information about the given entity, which PLMs are prone to fabricate; and Template that comprises generic content with designated slots for facts, which PLMs can generate competently. Based on the facts-template decomposition, we propose SlotSum, an explainable framework for entity abstract summarization. SlotSum first creates the template and then predicts the fact for each template slot based on the input documents. Benefiting from our facts-template decomposition, SlotSum can easily locate errors and further rectify hallucinated predictions with external knowledge. We construct a new dataset WikiFactSum to evaluate the performance of SlotSum. Experimental results demonstrate that SlotSum could generate summaries that are significantly more factual with credible external knowledge.

Large language models (LLMs) demonstrate their promise in tackling complicated practical challenges by combining action-based policies with chain of thought (CoT) reasoning. Having high-quality prompts on hand, however, is vital to the framework's effectiveness. Currently, these prompts are handcrafted utilising extensive human labor, resulting in CoT policies that frequently fail to generalise. Human intervention is also required to develop grounding functions that ensure low-level controllers appropriately process CoT reasoning. In this paper, we propose a comprehensive training framework for complex task-solving, incorporating human prior knowledge into the learning of action policies. To that purpose, we offer a new leader-follower bilevel framework that is capable of learning to ask relevant questions (prompts) and subsequently undertaking reasoning to guide the learning of actions. The prompt policy is employed to make introspective revisions based on historical findings, leading the CoT process to consider the anticipated goals and generate outputs that lead to decisive, high-performing actions. The action policy subsequently learns to comprehend and integrate the CoT outputs to take actions. Our empirical data reveal that our framework outperforms leading methods in $5$ decision-making tasks such as Overcooked and FourRoom.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司