Health policy decisions regarding patient treatment strategies require consideration of both treatment effectiveness and cost. Optimizing treatment rules with respect to effectiveness may result in prohibitively expensive strategies; on the other hand, optimizing with respect to costs may result in poor patient outcomes. We propose a two-step approach for identifying an optimally cost-effective and interpretable dynamic treatment regime. First, we develop a combined Q-learning and policy-search approach to estimate an optimal list-based regime under a constraint on expected treatment costs. Second, we propose an iterative procedure to select an optimally cost-effective regime from a set of candidate regimes corresponding to different cost constraints. Our approach can estimate optimal regimes in the presence of commonly encountered challenges including time-varying confounding and correlated outcomes. Through simulation studies, we illustrate the validity of estimated optimal treatment regimes and examine operating characteristics under flexible modeling approaches. Using data from an observational cancer database, we apply our methodology to evaluate optimally cost-effective treatment strategies for assigning adjuvant radiation and chemotherapy to endometrial cancer patients.
This paper introduces a differential dynamic programming (DDP) based framework for polynomial trajectory generation for differentially flat systems. In particular, instead of using a linear equation with increasing size to represent multiple polynomial segments as in literature, we take a new perspective from state-space representation such that the linear equation reduces to a finite horizon control system with a fixed state dimension and the required continuity conditions for consecutive polynomials are automatically satisfied. Consequently, the constrained trajectory generation problem (both with and without time optimization) can be converted to a discrete-time finite-horizon optimal control problem with inequality constraints, which can be approached by a recently developed interior-point DDP (IPDDP) algorithm. Furthermore, for unconstrained trajectory generation with preallocated time, we show that this problem is indeed a linear-quadratic tracking (LQT) problem (DDP algorithm with exact one iteration). All these algorithms enjoy linear complexity with respect to the number of segments. Both numerical comparisons with state-of-the-art methods and physical experiments are presented to verify and validate the effectiveness of our theoretical findings. The implementation code will be open-sourced,
Regression trees and their ensemble methods are popular methods for nonparametric regression: they combine strong predictive performance with interpretable estimators. To improve their utility for locally smooth response surfaces, we study regression trees and random forests with linear aggregation functions. We introduce a new algorithm that finds the best axis-aligned split to fit linear aggregation functions on the corresponding nodes, and we offer a quasilinear time implementation. We demonstrate the algorithm's favorable performance on real-world benchmarks and in an extensive simulation study, and we demonstrate its improved interpretability using a large get-out-the-vote experiment. We provide an open-source software package that implements several tree-based estimators with linear aggregation functions.
This paper addresses the task of estimating a covariance matrix under a patternless sparsity assumption. In contrast to existing approaches based on thresholding or shrinkage penalties, we propose a likelihood-based method that regularizes the distance from the covariance estimate to a symmetric sparsity set. This formulation avoids unwanted shrinkage induced by more common norm penalties and enables optimization of the resulting non-convex objective by solving a sequence of smooth, unconstrained subproblems. These subproblems are generated and solved via the proximal distance version of the majorization-minimization principle. The resulting algorithm executes rapidly, gracefully handles settings where the number of parameters exceeds the number of cases, yields a positive definite solution, and enjoys desirable convergence properties. Empirically, we demonstrate that our approach outperforms competing methods by several metrics across a suite of simulated experiments. Its merits are illustrated on an international migration dataset and a classic case study on flow cytometry. Our findings suggest that the marginal and conditional dependency networks for the cell signalling data are more similar than previously concluded.
The fractional knapsack problem is one of the classical problems in combinatorial optimization, which is well understood in the offline setting. However, the corresponding online setting has been handled only briefly in the theoretical computer science literature so far, although it appears in several applications. Even the previously best known guarantee for the competitive ratio was worse than the best known for the integral problem in the popular random order model. We show that there is an algorithm for the online fractional knapsack problem that admits a competitive ratio of 4.39. Our result significantly improves over the previously best known competitive ratio of 9.37 and surpasses the current best 6.65-competitive algorithm for the integral case. Moreover, our algorithm is deterministic in contrast to the randomized algorithms achieving the results mentioned above.
Mean field control (MFC) is an effective way to mitigate the curse of dimensionality of cooperative multi-agent reinforcement learning (MARL) problems. This work considers a collection of $N_{\mathrm{pop}}$ heterogeneous agents that can be segregated into $K$ classes such that the $k$-th class contains $N_k$ homogeneous agents. We aim to prove approximation guarantees of the MARL problem for this heterogeneous system by its corresponding MFC problem. We consider three scenarios where the reward and transition dynamics of all agents are respectively taken to be functions of $(1)$ joint state and action distributions across all classes, $(2)$ individual distributions of each class, and $(3)$ marginal distributions of the entire population. We show that, in these cases, the $K$-class MARL problem can be approximated by MFC with errors given as $e_1=\mathcal{O}(\frac{\sqrt{|\mathcal{X}||\mathcal{U}|}}{N_{\mathrm{pop}}}\sum_{k}\sqrt{N_k})$, $e_2=\mathcal{O}(\sqrt{|\mathcal{X}||\mathcal{U}|}\sum_{k}\frac{1}{\sqrt{N_k}})$ and $e_3=\mathcal{O}\left(\sqrt{|\mathcal{X}||\mathcal{U}|}\left[\frac{A}{N_{\mathrm{pop}}}\sum_{k\in[K]}\sqrt{N_k}+\frac{B}{\sqrt{N_{\mathrm{pop}}}}\right]\right)$, respectively, where $A, B$ are some constants and $|\mathcal{X}|,|\mathcal{U}|$ are the sizes of state and action spaces of each agent. Finally, we design a Natural Policy Gradient (NPG) based algorithm that, in the three cases stated above, can converge to an optimal MARL policy within $\mathcal{O}(e_j)$ error with a sample complexity of $\mathcal{O}(e_j^{-3})$, $j\in\{1,2,3\}$, respectively.
Pervasive cross-section dependence is increasingly recognized as an appropriate characteristic of economic data and the approximate factor model provides a useful framework for analysis. Assuming a strong factor structure, early work established convergence of the principal component estimates of the factors and loadings to a rotation matrix. This paper shows that the estimates are still consistent and asymptotically normal for a broad range of weaker factor loadings, albeit at slower rates and under additional assumptions on the sample size. Standard inference procedures can be used except in the case of extremely weak loadings which has encouraging implications for empirical work. The simplified proofs are of independent interest.
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, rather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE) -- the weighted QTE (WQTE) -- of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score. Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare propensity score regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.
As online shopping prevails and e-commerce platforms emerge, there is a tremendous number of parcels being transported every day. Thus, it is crucial for the logistics industry on how to assign a candidate logistics route for each shipping parcel properly as it leaves a significant impact on the total logistics cost optimization and business constraints satisfaction such as transit hub capacity and delivery proportion of delivery providers. This online route-assignment problem can be viewed as a constrained online decision-making problem. Notably, the large amount (beyond ${10^5}$) of daily parcels, the variability and non-Markovian characteristics of parcel information impose difficulties on attaining (near-) optimal solution without violating constraints excessively. In this paper, we develop a model-free DRL approach named PPO-RA, in which Proximal Policy Optimization (PPO) is improved with dedicated techniques to address the challenges for route assignment (RA). The actor and critic networks use attention mechanism and parameter sharing to accommodate each incoming parcel with varying numbers and identities of candidate routes, without modeling non-Markovian parcel arriving dynamics since we make assumption of i.i.d. parcel arrival. We use recorded delivery parcel data to evaluate the performance of PPO-RA by comparing it with widely-used baselines via simulation. The results show the capability of the proposed approach to achieve considerable cost savings while satisfying most constraints.
Deep reinforcement learning has recently shown many impressive successes. However, one major obstacle towards applying such methods to real-world problems is their lack of data-efficiency. To this end, we propose the Bottleneck Simulator: a model-based reinforcement learning method which combines a learned, factorized transition model of the environment with rollout simulations to learn an effective policy from few examples. The learned transition model employs an abstract, discrete (bottleneck) state, which increases sample efficiency by reducing the number of model parameters and by exploiting structural properties of the environment. We provide a mathematical analysis of the Bottleneck Simulator in terms of fixed points of the learned policy, which reveals how performance is affected by four distinct sources of error: an error related to the abstract space structure, an error related to the transition model estimation variance, an error related to the transition model estimation bias, and an error related to the transition model class bias. Finally, we evaluate the Bottleneck Simulator on two natural language processing tasks: a text adventure game and a real-world, complex dialogue response selection task. On both tasks, the Bottleneck Simulator yields excellent performance beating competing approaches.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.