亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Aerial-to-ground image synthesis is an emerging and challenging problem that aims to synthesize a ground image from an aerial image. Due to the highly different layout and object representation between the aerial and ground images, existing approaches usually fail to transfer the components of the aerial scene into the ground scene. In this paper, we propose a novel framework to explore the challenges by imposing enhanced structural alignment and semantic awareness. We introduce a novel semantic-attentive feature transformation module that allows to reconstruct the complex geographic structures by aligning the aerial feature to the ground layout. Furthermore, we propose semantic-aware loss functions by leveraging a pre-trained segmentation network. The network is enforced to synthesize realistic objects across various classes by separately calculating losses for different classes and balancing them. Extensive experiments including comparisons with previous methods and ablation studies show the effectiveness of the proposed framework both qualitatively and quantitatively.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Data assimilation addresses the problem of identifying plausible state trajectories of dynamical systems given noisy or incomplete observations. In geosciences, it presents challenges due to the high-dimensionality of geophysical dynamical systems, often exceeding millions of dimensions. This work assesses the scalability of score-based data assimilation (SDA), a novel data assimilation method, in the context of such systems. We propose modifications to the score network architecture aimed at significantly reducing memory consumption and execution time. We demonstrate promising results for a two-layer quasi-geostrophic model.

Through the Bayesian lens of data assimilation, uncertainty on model parameters is traditionally quantified through the posterior covariance matrix. However, in modern settings involving high-dimensional and computationally expensive forward models, posterior covariance knowledge must be relaxed to deterministic or stochastic approximations. In the carbon flux inversion literature, Chevallier et al. proposed a stochastic method capable of approximating posterior variances of linear functionals of the model parameters that is particularly well-suited for large-scale Earth-system data assimilation tasks. This note formalizes this algorithm and clarifies its properties. We provide a formal statement of the algorithm, demonstrate why it converges to the desired posterior variance quantity of interest, and provide additional uncertainty quantification allowing incorporation of the Monte Carlo sampling uncertainty into the method's Bayesian credible intervals. The methodology is demonstrated using toy simulations and a realistic carbon flux inversion observing system simulation experiment.

Simplicial complexes are a convenient semantic primitive to reason about processes (agents) communicating with each other in synchronous and asynchronous computation. Impure simplicial complexes distinguish active processes from crashed ones, in other words, agents that are alive from agents that are dead. In order to rule out that dead agents reason about themselves and about other agents, three-valued epistemic semantics have been proposed where, in addition to the usual values true and false, the third value stands for undefined: the knowledge of dead agents is undefined and so are the propositional variables describing their local state. Other semantics for impure complexes are two-valued where a dead agent knows everything. Different choices in designing a semantics produce different three-valued semantics, and also different two-valued semantics. In this work, we categorize the available choices by discounting the bad ones, identifying the equivalent ones, and connecting the non-equivalent ones via a translation. The main result of the paper is identifying the main relevant distinction to be the number of truth values and bridging this difference by means of a novel embedding from three- into two-valued semantics. This translation also enables us to highlight quite fundamental modeling differences underpinning various two- and three-valued approaches in this area of combinatorial topology. In particular, pure complexes can be defined as those invariant under the translation.

Stochastic approximation (SA) is a powerful and scalable computational method for iteratively estimating the solution of optimization problems in the presence of randomness, particularly well-suited for large-scale and streaming data settings. In this work, we propose a theoretical framework for stochastic approximation (SA) applied to non-parametric least squares in reproducing kernel Hilbert spaces (RKHS), enabling online statistical inference in non-parametric regression models. We achieve this by constructing asymptotically valid pointwise (and simultaneous) confidence intervals (bands) for local (and global) inference of the nonlinear regression function, via employing an online multiplier bootstrap approach to functional stochastic gradient descent (SGD) algorithm in the RKHS. Our main theoretical contributions consist of a unified framework for characterizing the non-asymptotic behavior of the functional SGD estimator and demonstrating the consistency of the multiplier bootstrap method. The proof techniques involve the development of a higher-order expansion of the functional SGD estimator under the supremum norm metric and the Gaussian approximation of suprema of weighted and non-identically distributed empirical processes. Our theory specifically reveals an interesting relationship between the tuning of step sizes in SGD for estimation and the accuracy of uncertainty quantification.

Confidential computing is a key technology for isolating high-assurance applications from the large amounts of untrusted code typical in modern systems. Existing confidential computing systems cannot be certified for use in critical applications, like systems controlling critical infrastructure, hardware security modules, or aircraft, as they lack formal verification. This paper presents an approach to formally modeling and proving a security monitor. It introduces a canonical architecture for virtual machine (VM)-based confidential computing systems. It abstracts processor-specific components and identifies a minimal set of hardware primitives required by a trusted security monitor to enforce security guarantees. We demonstrate our methodology and proposed approach with an example from our Rust implementation of the security monitor for RISC-V.

Inverse rendering, the process of inferring scene properties from images, is a challenging inverse problem. The task is ill-posed, as many different scene configurations can give rise to the same image. Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions, but they do not consider the inherent ambiguities and the multi-modal distribution of possible decompositions. In this work, we propose a novel scheme that integrates a denoising diffusion probabilistic model pre-trained on natural illumination maps into an optimization framework involving a differentiable path tracer. The proposed method allows sampling from combinations of illumination and spatially-varying surface materials that are, both, natural and explain the image observations. We further conduct an extensive comparative study of different priors on illumination used in previous work on inverse rendering. Our method excels in recovering materials and producing highly realistic and diverse environment map samples that faithfully explain the illumination of the input images.

We introduce a theoretical framework for sampling from unnormalized densities based on a smoothing scheme that uses an isotropic Gaussian kernel with a single fixed noise scale. We prove one can decompose sampling from a density (minimal assumptions made on the density) into a sequence of sampling from log-concave conditional densities via accumulation of noisy measurements with equal noise levels. Our construction is unique in that it keeps track of a history of samples, making it non-Markovian as a whole, but it is lightweight algorithmically as the history only shows up in the form of a running empirical mean of samples. Our sampling algorithm generalizes walk-jump sampling (Saremi & Hyv\"arinen, 2019). The "walk" phase becomes a (non-Markovian) chain of (log-concave) Markov chains. The "jump" from the accumulated measurements is obtained by empirical Bayes. We study our sampling algorithm quantitatively using the 2-Wasserstein metric and compare it with various Langevin MCMC algorithms. We also report a remarkable capacity of our algorithm to "tunnel" between modes of a distribution.

As a scene graph compactly summarizes the high-level content of an image in a structured and symbolic manner, the similarity between scene graphs of two images reflects the relevance of their contents. Based on this idea, we propose a novel approach for image-to-image retrieval using scene graph similarity measured by graph neural networks. In our approach, graph neural networks are trained to predict the proxy image relevance measure, computed from human-annotated captions using a pre-trained sentence similarity model. We collect and publish the dataset for image relevance measured by human annotators to evaluate retrieval algorithms. The collected dataset shows that our method agrees well with the human perception of image similarity than other competitive baselines.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.

北京阿比特科技有限公司