How scientists navigate between the need to capitalize on their prior knowledge by specializing, and the urge to adapt to evolving research opportunities? Drawing from diverse perspectives on adaptation, in particular from institutional change and cultural evolution, this paper proposes a Bayesian model of the evolution of scientists' research portfolios in response to transformations in their field. The model relies on scientific abstracts and authorship data to evaluate the influence of intellectual, social, and institutional resources on scientists' trajectories within a cohort of $2\,195$ high-energy physicists between 2000 and 2019. The reallocation of research efforts in response to the incentives to adapt is shown to be mainly structured by learning costs, thus maximizing the utility of the scientific capital disseminated among scientists. Two dimensions of social capital, namely ``diversity'' and ``power'', have opposite effects on the magnitude of change in scientists' research interests: while ``diversity'' disrupts and expands research interests, ``power'' stabilizes physicists' research agendas -- as does institutional stability. Social capital plays a more crucial role in shifts between cognitively distant research areas.
We consider applications of neural networks in nonlinear system identification and formulate a hypothesis that adjusting general network structure by incorporating frequency information or other known orthogonal transform, should result in an efficient neural network retaining its universal properties. We show that such a structure is a universal approximator and that using any orthogonal transform in a proposed way implies regularization during training by adjusting the learning rate of each parameter individually. We empirically show in particular, that such a structure, using the Fourier transform, outperforms equivalent models without orthogonality support.
In many classification applications, the prediction of a deep neural network (DNN) based classifier needs to be accompanied with some confidence indication. Two popular post-processing approaches for that aim are: 1) calibration: modifying the classifier's softmax values such that their maximum (associated with the prediction) better estimates the correctness probability; and 2) conformal prediction (CP): devising a score (based on the softmax values) from which a set of predictions with theoretically guaranteed marginal coverage of the correct class is produced. While in practice both types of indications can be desired, so far the interplay between them has not been investigated. Toward filling this gap, in this paper we study the effect of temperature scaling, arguably the most common calibration technique, on prominent CP methods. We start with an extensive empirical study that among other insights shows that, surprisingly, calibration has a detrimental effect on popular adaptive CP methods: it frequently leads to larger prediction sets. Then, we turn to theoretically analyze this behavior. We reveal several mathematical properties of the procedure, according to which we provide a reasoning for the phenomenon. Our study suggests that it may be worthwhile to utilize adaptive CP methods, chosen for their enhanced conditional coverage, based on softmax values prior to (or after canceling) temperature scaling calibration.
The self-rationalising capabilities of LLMs are appealing because the generated explanations can give insights into the plausibility of the predictions. However, how faithful the explanations are to the predictions is questionable, raising the need to explore the patterns behind them further. To this end, we propose a hypothesis-driven statistical framework. We use a Bayesian network to implement a hypothesis about how a task (in our example, natural language inference) is solved, and its internal states are translated into natural language with templates. Those explanations are then compared to LLM-generated free-text explanations using automatic and human evaluations. This allows us to judge how similar the LLM's and the Bayesian network's decision processes are. We demonstrate the usage of our framework with an example hypothesis and two realisations in Bayesian networks. The resulting models do not exhibit a strong similarity to GPT-3.5. We discuss the implications of this as well as the framework's potential to approximate LLM decisions better in future work.
In the light of recent advances in embodied data visualizations, we aim to shed light on agency in the context of data visualization. To do so, we introduce Data Agency and Data-Agent Interplay as potential terms and research focus. Furthermore, we exemplify the former in the context of human-robot interaction, and identify future challenges and research questions.
This paper presents an innovative approach to recognizing personality traits using deep learning (DL) methods applied to electrocardiogram (ECG) signals. Within the framework of detecting the big five personality traits model encompassing extra-version, neuroticism, agreeableness, conscientiousness, and openness, the research explores the potential of ECG-derived spectrograms as informative features. Optimal window sizes for spectrogram generation are determined, and a convolutional neural network (CNN), specifically Resnet-18, and visual transformer (ViT) are employed for feature extraction and personality trait classification. The study utilizes the publicly available ASCERTAIN dataset, which comprises various physiological signals, including ECG recordings, collected from 58 participants during the presentation of video stimuli categorized by valence and arousal levels. The outcomes of this study demonstrate noteworthy performance in personality trait classification, consistently achieving F1-scores exceeding 0.9 across different window sizes and personality traits. These results emphasize the viability of ECG signal spectrograms as a valuable modality for personality trait recognition, with Resnet-18 exhibiting effectiveness in discerning distinct personality traits.
Automatic KB completion for commonsense knowledge graphs (e.g., ATOMIC and ConceptNet) poses unique challenges compared to the much studied conventional knowledge bases (e.g., Freebase). Commonsense knowledge graphs use free-form text to represent nodes, resulting in orders of magnitude more nodes compared to conventional KBs (18x more nodes in ATOMIC compared to Freebase (FB15K-237)). Importantly, this implies significantly sparser graph structures - a major challenge for existing KB completion methods that assume densely connected graphs over a relatively smaller set of nodes. In this paper, we present novel KB completion models that can address these challenges by exploiting the structural and semantic context of nodes. Specifically, we investigate two key ideas: (1) learning from local graph structure, using graph convolutional networks and automatic graph densification and (2) transfer learning from pre-trained language models to knowledge graphs for enhanced contextual representation of knowledge. We describe our method to incorporate information from both these sources in a joint model and provide the first empirical results for KB completion on ATOMIC and evaluation with ranking metrics on ConceptNet. Our results demonstrate the effectiveness of language model representations in boosting link prediction performance and the advantages of learning from local graph structure (+1.5 points in MRR for ConceptNet) when training on subgraphs for computational efficiency. Further analysis on model predictions shines light on the types of commonsense knowledge that language models capture well.
Pre-trained deep neural network language models such as ELMo, GPT, BERT and XLNet have recently achieved state-of-the-art performance on a variety of language understanding tasks. However, their size makes them impractical for a number of scenarios, especially on mobile and edge devices. In particular, the input word embedding matrix accounts for a significant proportion of the model's memory footprint, due to the large input vocabulary and embedding dimensions. Knowledge distillation techniques have had success at compressing large neural network models, but they are ineffective at yielding student models with vocabularies different from the original teacher models. We introduce a novel knowledge distillation technique for training a student model with a significantly smaller vocabulary as well as lower embedding and hidden state dimensions. Specifically, we employ a dual-training mechanism that trains the teacher and student models simultaneously to obtain optimal word embeddings for the student vocabulary. We combine this approach with learning shared projection matrices that transfer layer-wise knowledge from the teacher model to the student model. Our method is able to compress the BERT_BASE model by more than 60x, with only a minor drop in downstream task metrics, resulting in a language model with a footprint of under 7MB. Experimental results also demonstrate higher compression efficiency and accuracy when compared with other state-of-the-art compression techniques.
Embedding entities and relations into a continuous multi-dimensional vector space have become the dominant method for knowledge graph embedding in representation learning. However, most existing models ignore to represent hierarchical knowledge, such as the similarities and dissimilarities of entities in one domain. We proposed to learn a Domain Representations over existing knowledge graph embedding models, such that entities that have similar attributes are organized into the same domain. Such hierarchical knowledge of domains can give further evidence in link prediction. Experimental results show that domain embeddings give a significant improvement over the most recent state-of-art baseline knowledge graph embedding models.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.
Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.