亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Code completion models have made significant progress in recent years, yet current popular evaluation datasets, such as HumanEval and MBPP, predominantly focus on code completion tasks within a single file. This over-simplified setting falls short of representing the real-world software development scenario where repositories span multiple files with numerous cross-file dependencies, and accessing and understanding cross-file context is often required to complete the code correctly. To fill in this gap, we propose CrossCodeEval, a diverse and multilingual code completion benchmark that necessitates an in-depth cross-file contextual understanding to complete the code accurately. CrossCodeEval is built on a diverse set of real-world, open-sourced, permissively-licensed repositories in four popular programming languages: Python, Java, TypeScript, and C#. To create examples that strictly require cross-file context for accurate completion, we propose a straightforward yet efficient static-analysis-based approach to pinpoint the use of cross-file context within the current file. Extensive experiments on state-of-the-art code language models like CodeGen and StarCoder demonstrate that CrossCodeEval is extremely challenging when the relevant cross-file context is absent, and we see clear improvements when adding these context into the prompt. However, despite such improvements, the pinnacle of performance remains notably unattained even with the highest-performing model, indicating that CrossCodeEval is also capable of assessing model's capability in leveraging extensive context to make better code completion. Finally, we benchmarked various methods in retrieving cross-file context, and show that CrossCodeEval can also be used to measure the capability of code retrievers.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

The joint progress of artificial neural networks (ANNs) and domain specific hardware accelerators such as GPUs and TPUs took over many domains of machine learning research. This development is accompanied by a rapid growth of the required computational demands for larger models and more data. Concurrently, emerging properties of foundation models such as in-context learning drive new opportunities for machine learning applications. However, the computational cost of such applications is a limiting factor of the technology in data centers, and more importantly in mobile devices and edge systems. To mediate the energy footprint and non-trivial latency of contemporary systems, neuromorphic computing systems deeply integrate computational principles of neurobiological systems by leveraging low-power analog and digital technologies. SpiNNaker2 is a digital neuromorphic chip developed for scalable machine learning. The event-based and asynchronous design of SpiNNaker2 allows the composition of large-scale systems involving thousands of chips. This work features the operating principles of SpiNNaker2 systems, outlining the prototype of novel machine learning applications. These applications range from ANNs over bio-inspired spiking neural networks to generalized event-based neural networks. With the successful development and deployment of SpiNNaker2, we aim to facilitate the advancement of event-based and asynchronous algorithms for future generations of machine learning systems.

Language models such as Bidirectional Encoder Representations from Transformers (BERT) have been very effective in various Natural Language Processing (NLP) and text mining tasks including text classification. However, some tasks still pose challenges for these models, including text classification with limited labels. This can result in a cold-start problem. Although some approaches have attempted to address this problem through single-stage clustering as an intermediate training step coupled with a pre-trained language model, which generates pseudo-labels to improve classification, these methods are often error-prone due to the limitations of the clustering algorithms. To overcome this, we have developed a novel two-stage intermediate clustering with subsequent fine-tuning that models the pseudo-labels reliably, resulting in reduced prediction errors. The key novelty in our model, IDoFew, is that the two-stage clustering coupled with two different clustering algorithms helps exploit the advantages of the complementary algorithms that reduce the errors in generating reliable pseudo-labels for fine-tuning. Our approach has shown significant improvements compared to strong comparative models.

Spatiotemporal prediction aims to generate future sequences by paradigms learned from historical contexts. It is essential in numerous domains, such as traffic flow prediction and weather forecasting. Recently, research in this field has been predominantly driven by deep neural networks based on autoencoder architectures. However, existing methods commonly adopt autoencoder architectures with identical receptive field sizes. To address this issue, we propose an Asymmetric Receptive Field Autoencoder (ARFA) model, which introduces corresponding sizes of receptive field modules tailored to the distinct functionalities of the encoder and decoder. In the encoder, we present a large kernel module for global spatiotemporal feature extraction. In the decoder, we develop a small kernel module for local spatiotemporal information reconstruction. Experimental results demonstrate that ARFA consistently achieves state-of-the-art performance on popular datasets. Additionally, we construct the RainBench, a large-scale radar echo dataset for precipitation prediction, to address the scarcity of meteorological data in the domain.

Recent years have witnessed growing concerns about the privacy of sensitive data. In response to these concerns, differential privacy has emerged as a rigorous framework for privacy protection, gaining widespread recognition in both academic and industrial circles. While substantial progress has been made in private data analysis, existing methods often suffer from impracticality or a significant loss of statistical efficiency. This paper aims to alleviate these concerns in the context of hypothesis testing by introducing differentially private permutation tests. The proposed framework extends classical non-private permutation tests to private settings, maintaining both finite-sample validity and differential privacy in a rigorous manner. The power of the proposed test depends on the choice of a test statistic, and we establish general conditions for consistency and non-asymptotic uniform power. To demonstrate the utility and practicality of our framework, we focus on reproducing kernel-based test statistics and introduce differentially private kernel tests for two-sample and independence testing: dpMMD and dpHSIC. The proposed kernel tests are straightforward to implement, applicable to various types of data, and attain minimax optimal power across different privacy regimes. Our empirical evaluations further highlight their competitive power under various synthetic and real-world scenarios, emphasizing their practical value. The code is publicly available to facilitate the implementation of our framework.

Sophisticated cyber attacks present significant challenges for organizations in detecting and preventing such threats. To address this critical need for advanced defense mechanisms, we propose an Ensemble Defense System (EDS). An EDS is a cybersecurity framework aggregating multiple security tools designed to monitor and alert an organization during cyber attacks. The proposed EDS leverages a comprehensive range of Intrusion Detection System (IDS) capabilities by introducing a hybrid of signature-based IDS and anomaly-based IDS tools. It also incorporates Elasticsearch, an open-source Security Information and Event Management (SIEM) tool, to facilitate data analysis and interactive visualization of alerts generated from IDSs. The effectiveness of the EDS is evaluated through a payload from a bash script that executes various attacks, including port scanning, privilege escalation, and Denial-of-Service (DoS). The evaluation demonstrates the EDS's ability to detect diverse cyber attacks.

In recent years, speech generation has seen remarkable progress, now achieving one-shot generation capability that is often virtually indistinguishable from real human voice. Integrating such advancements in speech generation with large language models might revolutionize a wide range of applications. However, certain applications, such as assistive conversational systems, require natural and conversational speech generation tools that also operate efficiently in real time. Current state-of-the-art models like VALL-E and SoundStorm, powered by hierarchical neural audio codecs, require large neural components and extensive training data to work well. In contrast, MQTTS aims to build more compact conversational TTS models while capitalizing on smaller-scale real-life conversational speech data. However, its autoregressive nature yields high inference latency and thus limits its real-time usage. In order to mitigate the current limitations of the state-of-the-art TTS models while capitalizing on their strengths, in this work we introduce the Pheme model series that 1) offers compact yet high-performing models, 2) allows for parallel speech generation of 3) natural conversational speech, and 4) it can be trained efficiently on smaller-scale conversational data, cutting data demands by more than 10x but still matching the quality of the autoregressive TTS models. We also show that through simple teacher-student distillation we can meet significant improvements in voice quality for single-speaker setups on top of pretrained Pheme checkpoints, relying solely on synthetic speech generated by much larger teacher models. Audio samples and pretrained models are available online.

Large language models (LLMs) have made significant advancements in code-related tasks, yet many LLMs treat code as simple sequences, neglecting its structured nature. We introduce AST-T5, a novel pretraining paradigm that leverages the Abstract Syntax Tree (AST) for enhanced code generation, transpilation, and understanding. Using dynamic programming, our AST-Aware Segmentation retains code structure, while our AST-Aware Span Corruption objective equips the model to reconstruct various code structures. Unlike other models, AST-T5 avoids intricate program analyses or architectural changes, so it integrates seamlessly with any encoder-decoder Transformer. Evaluations show that AST-T5 consistently outperforms similar-sized LMs across various code-related tasks. Structure-awareness makes AST-T5 particularly powerful in code-to-code tasks, surpassing CodeT5 by 2 points in exact match score for the Bugs2Fix task and by 3 points in exact match score for Java-C# Transpilation in CodeXGLUE. Our code and model are publicly available at //github.com/gonglinyuan/ast_t5.

When exploring the development of Artificial General Intelligence (AGI), a critical task for these models involves interpreting and processing information from multiple image inputs. However, Large Multimodal Models (LMMs) encounter two issues in such scenarios: (1) a lack of fine-grained perception, and (2) a tendency to blend information across multiple images. We first extensively investigate the capability of LMMs to perceive fine-grained visual details when dealing with multiple input images. The research focuses on two aspects: first, image-to-image matching (to evaluate whether LMMs can effectively reason and pair relevant images), and second, multi-image-to-text matching (to assess whether LMMs can accurately capture and summarize detailed image information). We conduct evaluations on a range of both open-source and closed-source large models, including GPT-4V, Gemini, OpenFlamingo, and MMICL. To enhance model performance, we further develop a Contrastive Chain-of-Thought (CoCoT) prompting approach based on multi-input multimodal models. This method requires LMMs to compare the similarities and differences among multiple image inputs, and then guide the models to answer detailed questions about multi-image inputs based on the identified similarities and differences. Our experimental results showcase CoCoT's proficiency in enhancing the multi-image comprehension capabilities of large multimodal models.

This article presents the affordances that Generative Artificial Intelligence can have in disinformation context, one of the major threats to our digitalized society. We present a research framework to generate customized agent-based social networks for disinformation simulations that would enable understanding and evaluation of the phenomena whilst discussing open challenges.

Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.

北京阿比特科技有限公司