亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The COVID-19 pandemic has severely disrupted the retail landscape and has accelerated the adoption of innovative technologies. A striking example relates to the proliferation of online grocery orders and the technology deployed to facilitate such logistics. In fact, for many retailers, this disruption was a wake-up call after which they started recognizing the power of data analytics and artificial intelligence (AI). In this article, we discuss the opportunities that AI can offer to retailers in the new normal retail landscape. Some of the techniques described have been applied at scale to adapt previously deployed AI models, whereas in other instances, fresh solutions needed to be developed to help retailers cope with recent disruptions, such as unexpected panic buying, retraining predictive models, and leveraging online-offline synergies.

相關內容

This study presents an in-depth analysis of the security landscape in Bluetooth Low Energy (BLE) tracking systems, with a particular emphasis on Apple AirTags and Samsung SmartTags, including their cryptographic frameworks. Our investigation traverses a wide spectrum of attack vectors such as physical tampering, firmware exploitation, signal spoofing, eavesdropping, jamming, app security flaws, Bluetooth security weaknesses, location spoofing, threats to owner devices, and cloud-related vulnerabilities. Moreover, we delve into the security implications of the cryptographic methods utilized in these systems. Our findings reveal that while BLE trackers like AirTags and SmartTags offer substantial utility, they also pose significant security risks. Notably, Apple's approach, which prioritizes user privacy by removing intermediaries, inadvertently leads to device authentication challenges, evidenced by successful AirTag spoofing instances. Conversely, Samsung SmartTags, designed to thwart beacon spoofing, raise critical concerns about cloud security and user privacy. Our analysis also highlights the constraints faced by these devices due to their design focus on battery life conservation, particularly the absence of secure boot processes, which leaves them susceptible to OS modification and a range of potential attacks. The paper concludes with insights into the anticipated evolution of these tracking systems. We predict that future enhancements will likely focus on bolstering security features, especially as these devices become increasingly integrated into the broader IoT ecosystem and face evolving privacy regulations. This shift is imperative to address the intricate balance between functionality and security in next-generation BLE tracking systems.

The COVID-19 pandemic brought about an extraordinary rate of scientific papers on the topic that were discussed among the general public, although often in biased or misinformed ways. In this paper, we present a mixed-methods analysis aimed at examining whether public discussions were commensurate with the scientific consensus on several COVID-19 issues. We estimate scientific consensus based on samples of abstracts from preprint servers and compare against the volume of public discussions on Twitter mentioning these papers. We find that anti-consensus posts and users, though overall less numerous than pro-consensus ones, are vastly over-represented on Twitter, thus producing a false consensus effect. This transpires with favorable papers being disproportionately amplified, along with an influx of new anti-consensus user sign-ups. Finally, our content analysis highlights that anti-consensus users misrepresent scientific findings or question scientists' integrity in their efforts to substantiate their claims.

Graphs have emerged as a natural choice to represent and analyze the intricate patterns and rich information of the Web, enabling applications such as online page classification and social recommendation. The prevailing "pre-train, fine-tune" paradigm has been widely adopted in graph machine learning tasks, particularly in scenarios with limited labeled nodes. However, this approach often exhibits a misalignment between the training objectives of pretext tasks and those of downstream tasks. This gap can result in the "negative transfer" problem, wherein the knowledge gained from pre-training adversely affects performance in the downstream tasks. The surge in prompt-based learning within Natural Language Processing (NLP) suggests the potential of adapting a "pre-train, prompt" paradigm to graphs as an alternative. However, existing graph prompting techniques are tailored to homogeneous graphs, neglecting the inherent heterogeneity of Web graphs. To bridge this gap, we propose HetGPT, a general post-training prompting framework to improve the predictive performance of pre-trained heterogeneous graph neural networks (HGNNs). The key is the design of a novel prompting function that integrates a virtual class prompt and a heterogeneous feature prompt, with the aim to reformulate downstream tasks to mirror pretext tasks. Moreover, HetGPT introduces a multi-view neighborhood aggregation mechanism, capturing the complex neighborhood structure in heterogeneous graphs. Extensive experiments on three benchmark datasets demonstrate HetGPT's capability to enhance the performance of state-of-the-art HGNNs on semi-supervised node classification.

In the continuously advancing AI landscape, crafting context-rich and meaningful responses via Large Language Models (LLMs) is essential. Researchers are becoming more aware of the challenges that LLMs with fewer parameters encounter when trying to provide suitable answers to open-ended questions. To address these hurdles, the integration of cutting-edge strategies, augmentation of rich external domain knowledge to LLMs, offers significant improvements. This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement, honing the proficiency of LLMs, especially in domain specific community question answering platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on various LLMs with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions. Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases. This advancement highlights the importance of pairing context rich data retrieval with LLMs, offering a renewed approach to knowledge sourcing and generation in AI systems. We also show that, due to rich contextual data retrieval, the crucial entities, along with the generated answer, remain factually coherent with the gold answer.

Multi-Label Classification (MLC) is a common task in the legal domain, where more than one label may be assigned to a legal document. A wide range of methods can be applied, ranging from traditional ML approaches to the latest Transformer-based architectures. In this work, we perform an evaluation of different MLC methods using two public legal datasets, POSTURE50K and EURLEX57K. By varying the amount of training data and the number of labels, we explore the comparative advantage offered by different approaches in relation to the dataset properties. Our findings highlight DistilRoBERTa and LegalBERT as performing consistently well in legal MLC with reasonable computational demands. T5 also demonstrates comparable performance while offering advantages as a generative model in the presence of changing label sets. Finally, we show that the CrossEncoder exhibits potential for notable macro-F1 score improvements, albeit with increased computational costs.

Prior research on transparency in content moderation has demonstrated the benefits of offering post-removal explanations to sanctioned users. In this paper, we examine whether the influence of such explanations transcends those who are moderated to the bystanders who witness such explanations. We conduct a quasi-experimental study on two popular Reddit communities (r/askreddit and r/science) by collecting their data spanning 13 months-a total of 85.5M posts made by 5.9M users. Our causal-inference analyses show that bystanders significantly increase their posting activity and interactivity levels as compared to their matched control set of users. Our findings suggest that explanations clarify and reinforce the social norms of online spaces, enhance community engagement, and benefit many more members than previously understood. We discuss the theoretical implications and design recommendations of this research, focusing on how investing more efforts in post-removal explanations can help build thriving online communities.

Large Language Models (LLMs) have upended decades of pedagogy in computing education. Students previously learned to code through \textit{writing} many small problems with less emphasis on code reading and comprehension. Recent research has shown that free code generation tools powered by LLMs can solve introductory programming problems presented in natural language with ease. In this paper, we propose a new way to teach programming with Prompt Problems. Students receive a problem visually, indicating how input should be transformed to output, and must translate that to a prompt for an LLM to decipher. The problem is considered correct when the code that is generated by the student prompt can pass all test cases. In this paper we present the design of this tool, discuss student interactions with it as they learn, and provide insights into this new class of programming problems as well as the design tools that integrate LLMs.

Recently, Mutual Information (MI) has attracted attention in bounding the generalization error of Deep Neural Networks (DNNs). However, it is intractable to accurately estimate the MI in DNNs, thus most previous works have to relax the MI bound, which in turn weakens the information theoretic explanation for generalization. To address the limitation, this paper introduces a probabilistic representation of DNNs for accurately estimating the MI. Leveraging the proposed MI estimator, we validate the information theoretic explanation for generalization, and derive a tighter generalization bound than the state-of-the-art relaxations.

Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization. However, their optimization properties are less well understood. We take the first step towards analyzing GNN training by studying the gradient dynamics of GNNs. First, we analyze linearized GNNs and prove that despite the non-convexity of training, convergence to a global minimum at a linear rate is guaranteed under mild assumptions that we validate on real-world graphs. Second, we study what may affect the GNNs' training speed. Our results show that the training of GNNs is implicitly accelerated by skip connections, more depth, and/or a good label distribution. Empirical results confirm that our theoretical results for linearized GNNs align with the training behavior of nonlinear GNNs. Our results provide the first theoretical support for the success of GNNs with skip connections in terms of optimization, and suggest that deep GNNs with skip connections would be promising in practice.

Commonsense knowledge and commonsense reasoning are some of the main bottlenecks in machine intelligence. In the NLP community, many benchmark datasets and tasks have been created to address commonsense reasoning for language understanding. These tasks are designed to assess machines' ability to acquire and learn commonsense knowledge in order to reason and understand natural language text. As these tasks become instrumental and a driving force for commonsense research, this paper aims to provide an overview of existing tasks and benchmarks, knowledge resources, and learning and inference approaches toward commonsense reasoning for natural language understanding. Through this, our goal is to support a better understanding of the state of the art, its limitations, and future challenges.

北京阿比特科技有限公司