亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Population aging is a global challenge, leading to increased demand for healthcare and social services for the elderly. Home Health Care (HHC) emerges as a vital solution, specifically designed to serve this population segment. Given the surging demand for HHC, it's essential to coordinate and regulate caregiver allocation efficiently. This is crucial for both budget-optimized planning and ensuring the delivery of high-quality care. This research addresses a key question faced by home health agencies (HHAs): "How can caregiver allocation be optimized, especially when caregivers prefer flexibility in their visiting sequences?". While earlier studies proposed rigid visiting sequences, our study introduces a decision support framework that allocates caregivers through a hybrid method that considers the flexibility in visiting sequences and aims to reduce travel mileage, increase the number of visits per planning period, and maintain the continuity of care - a critical metric for patient satisfaction. Utilizing data from an HHA in Tennessee, United States, our approach led to an impressive reduction in average travel mileage (up to 42% depending on discipline) without imposing restrictions on caregivers. Furthermore, the proposed framework is used for caregivers' supply analysis to provide valuable insights into caregiver resource management.

相關內容

Neural 3D scene representations have shown great potential for 3D reconstruction from 2D images. However, reconstructing real-world captures of complex scenes still remains a challenge. Existing generic 3D reconstruction methods often struggle to represent fine geometric details and do not adequately model reflective surfaces of large-scale scenes. Techniques that explicitly focus on reflective surfaces can model complex and detailed reflections by exploiting better reflection parameterizations. However, we observe that these methods are often not robust in real unbounded scenarios where non-reflective as well as reflective components are present. In this work, we propose UniSDF, a general purpose 3D reconstruction method that can reconstruct large complex scenes with reflections. We investigate both view-based as well as reflection-based color prediction parameterization techniques and find that explicitly blending these representations in 3D space enables reconstruction of surfaces that are more geometrically accurate, especially for reflective surfaces. We further combine this representation with a multi-resolution grid backbone that is trained in a coarse-to-fine manner, enabling faster reconstructions than prior methods. Extensive experiments on object-level datasets DTU, Shiny Blender as well as unbounded datasets Mip-NeRF 360 and Ref-NeRF real demonstrate that our method is able to robustly reconstruct complex large-scale scenes with fine details and reflective surfaces. Please see our project page at //fangjinhuawang.github.io/UniSDF.

Data sharing is a necessity for innovative progress in many domains, especially in healthcare. However, the ability to share data is hindered by regulations protecting the privacy of natural persons. Synthetic tabular data provide a promising solution to address data sharing difficulties but does not inherently guarantee privacy. Still, there is a lack of agreement on appropriate methods for assessing the privacy-preserving capabilities of synthetic data, making it difficult to compare results across studies. To the best of our knowledge, this is the first work to identify properties that constitute good universal privacy evaluation metrics for synthetic tabular data. The goal of such metrics is to enable comparability across studies and to allow non-technical stakeholders to understand how privacy is protected. We identify four principles for the assessment of metrics: Comparability, Applicability, Interpretability, and Representativeness (CAIR). To quantify and rank the degree to which evaluation metrics conform to the CAIR principles, we design a rubric using a scale of 1-4. Each of the four properties is scored on four parameters, yielding 16 total dimensions. We study the applicability and usefulness of the CAIR principles and rubric by assessing a selection of metrics popular in other studies. The results provide granular insights into the strengths and weaknesses of existing metrics that not only rank the metrics but highlight areas of potential improvements. We expect that the CAIR principles will foster agreement among researchers and organizations on which universal privacy evaluation metrics are appropriate for synthetic tabular data.

We consider the approximation of entropy solutions of nonlinear hyperbolic conservation laws using neural networks. We provide explicit computations that highlight why classical PINNs will not work for discontinuous solutions to nonlinear hyperbolic conservation laws and show that weak (dual) norms of the PDE residual should be used in the loss functional. This approach has been termed "weak PINNs" recently. We suggest some modifications to weak PINNs that make their training easier, which leads to smaller errors with less training, as shown by numerical experiments. Additionally, we extend wPINNs to scalar conservation laws with weak boundary data and to systems of hyperbolic conservation laws. We perform numerical experiments in order to assess the accuracy and efficiency of the extended method.

In recent years, the rapid advancement and impressive capabilities of Large Language Models (LLMs) have been evident across various domains. This paper explores the application, implications, and potential of LLMs in building energy efficiency and decarbonization studies. The wide-ranging capabilities of LLMs are examined in the context of the building energy field, including intelligent control systems, code generation, data infrastructure, knowledge extraction, and education. Despite the promising potential of LLMs, challenges including complex and expensive computation, data privacy, security and copyright, complexity in fine-tuned LLMs, and self-consistency are discussed. The paper concludes with a call for future research focused on the enhancement of LLMs for domain-specific tasks, multi-modal LLMs, and collaborative research between AI and energy experts.

Robust locomotion control depends on accurate state estimations. However, the sensors of most legged robots can only provide partial and noisy observations, making the estimation particularly challenging, especially for external states like terrain frictions and elevation maps. Inspired by the classical Internal Model Control principle, we consider these external states as disturbances and introduce Hybrid Internal Model (HIM) to estimate them according to the response of the robot. The response, which we refer to as the hybrid internal embedding, contains the robot's explicit velocity and implicit stability representation, corresponding to two primary goals for locomotion tasks: explicitly tracking velocity and implicitly maintaining stability. We use contrastive learning to optimize the embedding to be close to the robot's successor state, in which the response is naturally embedded. HIM has several appealing benefits: It only needs the robot's proprioceptions, i.e., those from joint encoders and IMU as observations. It innovatively maintains consistent observations between simulation reference and reality that avoids information loss in mimicking learning. It exploits batch-level information that is more robust to noises and keeps better sample efficiency. It only requires 1 hour of training on an RTX 4090 to enable a quadruped robot to traverse any terrain under any disturbances. A wealth of real-world experiments demonstrates its agility, even in high-difficulty tasks and cases never occurred during the training process, revealing remarkable open-world generalizability.

Alignment is crucial for training large language models. The predominant strategy is Reinforcement Learning from Human Feedback (RLHF), with Proximal Policy Optimization (PPO) as the de-facto algorithm. Yet, PPO is known to struggle with computational inefficiency, a challenge that this paper aims to address. We identify three important properties of RLHF tasks: fast simulation, deterministic transitions, and trajectory-level rewards, which are not leveraged in PPO. Based on these properties, we develop ReMax, a new algorithm tailored for RLHF. The design of ReMax builds on the celebrated algorithm REINFORCE but is enhanced with a new variance-reduction technique. ReMax offers threefold advantages over PPO: first, it is simple to implement with just 6 lines of code. It further eliminates more than 4 hyper-parameters in PPO, which are laborious to tune. Second, ReMax reduces memory usage by about 50%. To illustrate, PPO runs out of memory when fine-tuning a Llama2-7B model on A100-80GB GPUs, whereas ReMax can support the training. Even though memory-efficient techniques (e.g., ZeRO and offload) are employed for PPO to afford training, ReMax can utilize a larger batch size to increase throughput. Third, in terms of wall-clock time, PPO is about twice as slow as ReMax per iteration. Importantly, these improvements do not sacrifice task performance. We hypothesize that these advantages can be maintained in larger-scale models.

Societal change is often driven by shifts in public opinion. As citizens evolve in their norms, beliefs, and values, public policies change too. While traditional opinion polling and surveys can outline the broad strokes of whether public opinion on a particular topic is changing, they usually cannot capture the full multi-dimensional richness and diversity of opinion present in a large heterogeneous population. However, an increasing fraction of public discourse about public policy issues is now occurring on online platforms, which presents an opportunity to measure public opinion change at a qualitatively different scale of resolution and context. In this paper, we present a conceptual model of observed opinion change on online platforms and apply it to study public discourse on Universal Basic Income (UBI) on Reddit throughout its history. UBI is a periodic, no-strings-attached cash payment given to every citizen of a population. We study UBI as it is a clearly-defined policy proposal that has recently experienced a surge of interest through trends like automation and events like the COVID-19 pandemic. We find that overall stance towards UBI on Reddit significantly declined until mid-2019, when this historical trend suddenly reversed and Reddit became substantially more supportive. Using our model, we find the most significant drivers of this overall stance change were shifts within different user cohorts, within communities that represented similar affluence levels, and within communities that represented similar partisan leanings. Our method identifies nuanced social drivers of opinion change in the large-scale public discourse that now regularly occurs online, and could be applied to a broad set of other important issues and policies.

A common approach to learning mobile health (mHealth) intervention policies is linear Thompson sampling. Two desirable mHealth policy features are (1) pooling information across individuals and time and (2) incorporating a time-varying baseline reward. Previous approaches pooled information across individuals but not time, failing to capture trends in treatment effects over time. In addition, these approaches did not explicitly model the baseline reward, which limited the ability to precisely estimate the parameters in the differential reward model. In this paper, we propose a novel Thompson sampling algorithm, termed ''DML-TS-NNR'' that leverages (1) nearest-neighbors to efficiently pool information on the differential reward function across users and time and (2) the Double Machine Learning (DML) framework to explicitly model baseline rewards and stay agnostic to the supervised learning algorithms used. By explicitly modeling baseline rewards, we obtain smaller confidence sets for the differential reward parameters. We offer theoretical guarantees on the pseudo-regret, which are supported by empirical results. Importantly, the DML-TS-NNR algorithm demonstrates robustness to potential misspecifications in the baseline reward model.

With the bomb ignited by ChatGPT, Transformer-based Large Language Models (LLMs) have paved a revolutionary path toward Artificial General Intelligence (AGI) and have been applied in diverse areas as knowledge bases, human interfaces, and dynamic agents. However, a prevailing limitation exists: many current LLMs, constrained by resources, are primarily pre-trained on shorter texts, rendering them less effective for longer-context prompts, commonly encountered in real-world settings. In this paper, we present a comprehensive survey focusing on the advancement of model architecture in Transformer-based LLMs to optimize long-context capabilities across all stages from pre-training to inference. We firstly delineate and analyze the problems of handling long-context input and output with the current Transformer-based models. Then, we mainly offer a holistic taxonomy to navigate the landscape of Transformer upgrades on architecture to solve these problems. Afterward, we provide the investigation on wildly used evaluation necessities tailored for long-context LLMs, including datasets, metrics, and baseline models, as well as some amazing optimization toolkits like libraries, systems, and compilers to augment LLMs' efficiency and efficacy across different stages. Finally, we further discuss the predominant challenges and potential avenues for future research in this domain. Additionally, we have established a repository where we curate relevant literature with real-time updates at //github.com/Strivin0311/long-llms-learning.

Knowledge plays a critical role in artificial intelligence. Recently, the extensive success of pre-trained language models (PLMs) has raised significant attention about how knowledge can be acquired, maintained, updated and used by language models. Despite the enormous amount of related studies, there still lacks a unified view of how knowledge circulates within language models throughout the learning, tuning, and application processes, which may prevent us from further understanding the connections between current progress or realizing existing limitations. In this survey, we revisit PLMs as knowledge-based systems by dividing the life circle of knowledge in PLMs into five critical periods, and investigating how knowledge circulates when it is built, maintained and used. To this end, we systematically review existing studies of each period of the knowledge life cycle, summarize the main challenges and current limitations, and discuss future directions.

北京阿比特科技有限公司