亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ensemble data assimilation of computational fluid dynamics simulations based on the lattice Boltzmann method (LBM) and the local ensemble transform Kalman filter (LETKF) is implemented and optimized on a GPU supercomputer based on NVIDIA A100 GPUs. To connect the LBM and LETKF parts, data transpose communication is optimized by overlapping computation, file I/O, and communication based on data dependency in each LETKF kernel. In two dimensional forced isotropic turbulence simulations with the ensemble size of $M=64$ and the number of grid points of $N_x=128^2$, the optimized implementation achieved $\times3.80$ speedup from the naive implementation, in which the LETKF part is not parallelized. The main computing kernel of the local problem is the eigenvalue decomposition (EVD) of $M\times M$ real symmetric dense matrices, which is computed by a newly developed batched EVD in $\verb|EigenG|$. The batched EVD in $\verb|EigenG|$ outperforms that in $\verb|cuSOLVER|$, and $\times65.3$ speedup was achieved.

相關內容

This scientific paper explores two distinct approaches for identifying and approximating the simulation model, particularly in the context of the snap process crucial to medical device assembly. Simulation models play a pivotal role in providing engineers with insights into industrial processes, enabling experimentation and troubleshooting before physical assembly. However, their complexity often results in time-consuming computations. To mitigate this complexity, we present two distinct methods for identifying simulation models: one utilizing Spline functions and the other harnessing Machine Learning (ML) models. Our goal is to create adaptable models that accurately represent the snap process and can accommodate diverse scenarios. Such models hold promise for enhancing process understanding and aiding in decision-making, especially when data availability is limited.

We present a generalized linear structural causal model, coupled with a novel data-adaptive linear regularization, to recover causal directed acyclic graphs (DAGs) from time series. By leveraging a recently developed stochastic monotone Variational Inequality (VI) formulation, we cast the causal discovery problem as a general convex optimization. Furthermore, we develop a non-asymptotic recovery guarantee and quantifiable uncertainty by solving a linear program to establish confidence intervals for a wide range of non-linear monotone link functions. We validate our theoretical results and show the competitive performance of our method via extensive numerical experiments. Most importantly, we demonstrate the effectiveness of our approach in recovering highly interpretable causal DAGs over Sepsis Associated Derangements (SADs) while achieving comparable prediction performance to powerful ``black-box'' models such as XGBoost. Thus, the future adoption of our proposed method to conduct continuous surveillance of high-risk patients by clinicians is much more likely.

We explore calibration properties at various precisions for three architectures: ShuffleNetv2, GhostNet-VGG, and MobileOne; and two datasets: CIFAR-100 and PathMNIST. The quality of calibration is observed to track the quantization quality; it is well-documented that performance worsens with lower precision, and we observe a similar correlation with poorer calibration. This becomes especially egregious at 4-bit activation regime. GhostNet-VGG is shown to be the most robust to overall performance drop at lower precision. We find that temperature scaling can improve calibration error for quantized networks, with some caveats. We hope that these preliminary insights can lead to more opportunities for explainable and reliable EdgeML.

Robust adaptive beamforming (RAB) based on interference-plus-noise covariance (INC) matrix reconstruction can experience performance degradation when model mismatch errors exist, particularly when the input signal-to-noise ratio (SNR) is large. In this work, we devise an efficient RAB technique for dealing with covariance matrix reconstruction issues. The proposed method involves INC matrix reconstruction using an idea in which the power and the steering vector of the interferences are estimated based on the power method. Furthermore, spatial match processing is computed to reconstruct the desired signal-plus-noise covariance matrix. Then, the noise components are excluded to retain the desired signal (DS) covariance matrix. A key feature of the proposed technique is to avoid eigenvalue decomposition of the INC matrix to obtain the dominant power of the interference-plus-noise region. Moreover, the INC reconstruction is carried out according to the definition of the theoretical INC matrix. Simulation results are shown and discussed to verify the effectiveness of the proposed method against existing approaches.

We present a generalisation of the theory of quantitative algebras of Mardare, Panangaden and Plotkin where (i) the carriers of quantitative algebras are not restricted to be metric spaces and can be arbitrary fuzzy relations or generalised metric spaces, and (ii) the interpretations of the algebraic operations are not required to be nonexpansive. Our main results include: a novel sound and complete proof system, the proof that free quantitative algebras always exist, the proof of strict monadicity of the induced Free-Forgetful adjunction, the result that all monads (on fuzzy relations) that lift finitary monads (on sets) admit a quantitative equational presentation.

Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.

Fractional (hyper-)graph theory is concerned with the specific problems that arise when fractional analogues of otherwise integer-valued (hyper-)graph invariants are considered. The focus of this paper is on fractional edge covers of hypergraphs. Our main technical result generalizes and unifies previous conditions under which the size of the support of fractional edge covers is bounded independently of the size of the hypergraph itself. This allows us to extend previous tractability results for checking if the fractional hypertree width of a given hypergraph is $\leq k$ for some constant $k$. We also show how our results translate to fractional vertex covers.

This research introduces an enhanced version of the multi-objective speech assessment model, called MOSA-Net+, by leveraging the acoustic features from large pre-trained weakly supervised models, namely Whisper, to create embedding features. The first part of this study investigates the correlation between the embedding features of Whisper and two self-supervised learning (SSL) models with subjective quality and intelligibility scores. The second part evaluates the effectiveness of Whisper in deploying a more robust speech assessment model. Third, the possibility of combining representations from Whisper and SSL models while deploying MOSA-Net+ is analyzed. The experimental results reveal that Whisper's embedding features correlate more strongly with subjective quality and intelligibility than other SSL's embedding features, contributing to more accurate prediction performance achieved by MOSA-Net+. Moreover, combining the embedding features from Whisper and SSL models only leads to marginal improvement. As compared to MOSA-Net and other SSL-based speech assessment models, MOSA-Net+ yields notable improvements in estimating subjective quality and intelligibility scores across all evaluation metrics. We further tested MOSA-Net+ on Track 3 of the VoiceMOS Challenge 2023 and obtained the top-ranked performance.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司