亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Biomedical triple extraction systems aim to automatically extract biomedical entities and relations between entities. The exploration of applying large language models (LLM) to triple extraction is still relatively unexplored. In this work, we mainly focus on sentence-level biomedical triple extraction. Furthermore, the absence of a high-quality biomedical triple extraction dataset impedes the progress in developing robust triple extraction systems. To address these challenges, initially, we compare the performance of various large language models. Additionally, we present GIT, an expert-annotated biomedical triple extraction dataset that covers a wider range of relation types.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · FAST · 樣本 · 估計/估計量 · INFORMS ·
2024 年 5 月 27 日

Bayesian hypothesis tests leverage posterior probabilities, Bayes factors, or credible intervals to inform data-driven decision making. We propose a framework for power curve approximation with such hypothesis tests. We present a fast approach to explore the approximate sampling distribution of posterior probabilities when the conditions for the Bernstein-von Mises theorem are satisfied. We extend that approach to consider segments of such sampling distributions in a targeted manner for each sample size explored. These sampling distribution segments are used to construct power curves for various types of posterior analyses. Our resulting method for power curve approximation is orders of magnitude faster than conventional power curve estimation for Bayesian hypothesis tests. We also prove the consistency of the corresponding power estimates and sample size recommendations under certain conditions.

Sequential decision-making algorithms such as reinforcement learning (RL) in real-world scenarios inevitably face environments with partial observability. This paper scrutinizes the effectiveness of a popular architecture, namely Transformers, in Partially Observable Markov Decision Processes (POMDPs) and reveals its theoretical limitations. We establish that regular languages, which Transformers struggle to model, are reducible to POMDPs. This poses a significant challenge for Transformers in learning POMDP-specific inductive biases, due to their lack of inherent recurrence found in other models like RNNs. This paper casts doubt on the prevalent belief in Transformers as sequence models for RL and proposes to introduce a point-wise recurrent structure. The Deep Linear Recurrent Unit (LRU) emerges as a well-suited alternative for Partially Observable RL, with empirical results highlighting the sub-optimal performance of the Transformer and considerable strength of LRU.

Most automated program verifiers for separation logic use either symbolic execution or verification condition generation to extract proof obligations, which are then handed over to an SMT solver. Existing verification algorithms are designed to be sound, but differ in performance and completeness. These characteristics may also depend on the programs and properties to be verified. Consequently, developers and users of program verifiers have to select a verification algorithm carefully for their application domain. Taking an informed decision requires a systematic comparison of the performance and completeness characteristics of the verification algorithms used by modern separation logic verifiers, but such a comparison does not exist. This paper describes five verification algorithms for separation logic, three that are used in existing tools and two novel algorithms that combine characteristics of existing symbolic execution and verification condition generation algorithms. A detailed evaluation of implementations of these five algorithms in the Viper infrastructure assesses their performance and completeness for different classes of input programs. Based on the experimental results, we identify candidate portfolios of algorithms that maximize completeness and performance.

Large Language Models (LLMs) have demonstrated considerable cross-lingual alignment and generalization ability. Current research primarily focuses on improving LLMs' cross-lingual generalization capabilities. However, there is still a lack of research on the intrinsic mechanisms of how LLMs achieve cross-lingual alignment. From the perspective of region partitioning, this paper conducts several investigations on the linguistic competence of LLMs. We discover a core region in LLMs that corresponds to linguistic competence, accounting for approximately 1% of the total model parameters. Removing this core region by setting parameters to zero results in a significant performance decrease across 30 different languages. Furthermore, this core region exhibits significant dimensional dependency, perturbations to even a single parameter on specific dimensions leading to a loss of linguistic competence. Moreover, we discover that distinct monolingual regions exist for different languages, and disruption to these specific regions substantially reduces the LLMs' proficiency in those corresponding languages. Our research also indicates that freezing the core linguistic region during further pre-training can mitigate the issue of catastrophic forgetting (CF), a common phenomenon observed during further pre-training of LLMs. Overall, exploring the LLMs' functional regions provides insights into the foundation of their intelligence.

Improving the reasoning capabilities of large language models (LLMs) has attracted considerable interest. Recent approaches primarily focus on improving the reasoning process to yield a more precise final answer. However, in scenarios involving contextually aware reasoning, these methods neglect the importance of first identifying logical relationships from the context before proceeding with the reasoning. This oversight could lead to a superficial understanding and interaction with the context, potentially undermining the quality and reliability of the reasoning outcomes. In this paper, we propose an information re-organization (InfoRE) method before proceeding with the reasoning to enhance the reasoning ability of LLMs. Our re-organization method involves initially extracting logical relationships from the contextual content, such as documents or paragraphs, and subsequently pruning redundant content to minimize noise. Then, we utilize the re-organized information in the reasoning process. This enables LLMs to deeply understand the contextual content by clearly perceiving these logical relationships, while also ensuring high-quality responses by eliminating potential noise. To demonstrate the effectiveness of our approach in improving the reasoning ability, we conduct experiments using Llama2-70B, GPT-3.5, and GPT-4 on various contextually aware multi-hop reasoning tasks. Using only a zero-shot setting, our method achieves an average absolute improvement of 4% across all tasks, highlighting its potential to improve the reasoning performance of LLMs. Our source code is available at //github.com/hustcxx/InfoRE.

Critical learning periods are periods early in development where temporary sensory deficits can have a permanent effect on behavior and learned representations. Despite the radical differences between biological and artificial networks, critical learning periods have been empirically observed in both systems. This suggests that critical periods may be fundamental to learning and not an accident of biology. Yet, why exactly critical periods emerge in deep networks is still an open question, and in particular it is unclear whether the critical periods observed in both systems depend on particular architectural or optimization details. To isolate the key underlying factors, we focus on deep linear network models, and show that, surprisingly, such networks also display much of the behavior seen in biology and artificial networks, while being amenable to analytical treatment. We show that critical periods depend on the depth of the model and structure of the data distribution. We also show analytically and in simulations that the learning of features is tied to competition between sources. Finally, we extend our analysis to multi-task learning to show that pre-training on certain tasks can damage the transfer performance on new tasks, and show how this depends on the relationship between tasks and the duration of the pre-training stage. To the best of our knowledge, our work provides the first analytically tractable model that sheds light into why critical learning periods emerge in biological and artificial networks.

Machine unlearning, a novel area within artificial intelligence, focuses on addressing the challenge of selectively forgetting or reducing undesirable knowledge or behaviors in machine learning models, particularly in the context of large language models (LLMs). This paper introduces a methodology to align LLMs, such as Open Pre-trained Transformer Language Models, with ethical, privacy, and safety standards by leveraging the gradient ascent algorithm for knowledge unlearning. Our approach aims to selectively erase or modify learned information in LLMs, targeting harmful responses and copyrighted content. This paper presents a dual-pronged approach to enhance the ethical and safe behavior of large language models (LLMs) by addressing the issues of harmful responses and copyrighted content. To mitigate harmful responses, we applied gradient ascent on the PKU dataset, achieving a 75\% reduction in harmful responses for Open Pre-trained Transformer Language Models (OPT1.3b and OPT2.7b) \citet{zhang2022opt} while retaining previous knowledge using the TruthfulQA dataset \citet{DBLP:journals/corr/abs-2109-07958}. For handling copyrighted content, we constructed a custom dataset based on the Lord of the Rings corpus and aligned LLMs (OPT1.3b and OPT2.7b) \citet{zhang2022opt} through LoRA: Low-Rank Adaptation of Large Language Models \citet{DBLP:journals/corr/abs-2106-09685} finetuning. Subsequently, we employed gradient ascent to unlearn the Lord of the Rings content, resulting in a remarkable reduction in the presence of copyrighted material. To maintain a diverse knowledge base, we utilized the Book Corpus dataset. Additionally, we propose a new evaluation technique for assessing the effectiveness of harmful unlearning.

The study of behavioral diversity in Multi-Agent Reinforcement Learning (MARL) is a nascent yet promising field. In this context, the present work deals with the question of how to control the diversity of a multi-agent system. With no existing approaches to control diversity to a set value, current solutions focus on blindly promoting it via intrinsic rewards or additional loss functions, effectively changing the learning objective and lacking a principled measure for it. To address this, we introduce Diversity Control (DiCo), a method able to control diversity to an exact value of a given metric by representing policies as the sum of a parameter-shared component and dynamically scaled per-agent components. By applying constraints directly to the policy architecture, DiCo leaves the learning objective unchanged, enabling its applicability to any actor-critic MARL algorithm. We theoretically prove that DiCo achieves the desired diversity, and we provide several experiments, both in cooperative and competitive tasks, that show how DiCo can be employed as a novel paradigm to increase performance and sample efficiency in MARL. Multimedia results are available on the paper's website: //sites.google.com/view/dico-marl.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.

北京阿比特科技有限公司