The standard goal for an effective algebraic multigrid (AMG) algorithm is to develop relaxation and coarse-grid correction schemes that attenuate complementary error modes. In the nonsymmetric setting, coarse-grid correction $\Pi$ will almost certainly be nonorthogonal (and divergent) in any known inner product, meaning $\|\Pi\| > 1$. This introduces a new consideration, that one wants coarse-grid correction to be as close to orthogonal as possible, in an appropriate norm. In addition, due to non-orthogonality, $\Pi$ may actually amplify certain error modes that are in the range of interpolation. Relaxation must then not only be complementary to interpolation, but also rapidly eliminate any error amplified by the non-orthogonal correction, or the algorithm may diverge. This note develops analytic formulae on how to construct ``compatible'' transfer operators in nonsymmetric AMG such that $\|\Pi\| = 1$ in any standard matrix-induced norm. Discussion is provided on different options for norm in the nonsymmetric setting, the relation between ``ideal'' transfer operators in different norms, and insight into the convergence of nonsymmetric reduction-based AMG.
Momentum space transformations for incommensurate 2D electronic structure calculations are fundamental for reducing computational cost and for representing the data in a more physically motivating format, as exemplified in the Bistritzer-MacDonald model. However, these transformations can be difficult to implement in more complex systems such as when mechanical relaxation patterns are present. In this work, we aim for two objectives. Firstly, we strive to simplify the understanding and implementation of this transformation by rigorously writing the transformations between the four relevant spaces, which we denote real space, configuration space, momentum space, and reciprocal space. This provides a straight-forward algorithm for writing the complex momentum space model from the original real space model. Secondly, we implement this for twisted bilayer graphene with mechanical relaxation affects included. We also analyze the convergence rates of the approximations, and show the tight-binding coupling range increases for smaller relative twists between layers, demonstrating that the 3-nearest neighbor coupling of the Bistritzer-MacDonald model is insufficient when mechanical relaxation is included for very small angles. We quantify this and verify with numerical simulation.
The Fourier neural operator (FNO) is a powerful technique for learning surrogate maps for partial differential equation (PDE) solution operators. For many real-world applications, which often require high-resolution data points, training time and memory usage are significant bottlenecks. While there are mixed-precision training techniques for standard neural networks, those work for real-valued datatypes on finite dimensions and therefore cannot be directly applied to FNO, which crucially operates in the (complex-valued) Fourier domain and in function spaces. On the other hand, since the Fourier transform is already an approximation (due to discretization error), we do not need to perform the operation at full precision. In this work, we (i) profile memory and runtime for FNO with full and mixed-precision training, (ii) conduct a study on the numerical stability of mixed-precision training of FNO, and (iii) devise a training routine which substantially decreases training time and memory usage (up to 34%), with little or no reduction in accuracy, on the Navier-Stokes and Darcy flow equations. Combined with the recently proposed tensorized FNO (Kossaifi et al., 2023), the resulting model has far better performance while also being significantly faster than the original FNO.
The main limiting factor in the development of robust multilingual dialogue evaluation metrics is the lack of multilingual data and the limited availability of open sourced multilingual dialogue systems. In this work, we propose a workaround for this lack of data by leveraging a strong multilingual pretrained LLM and augmenting existing English dialogue data using Machine Translation. We empirically show that the naive approach of finetuning a pretrained multilingual encoder model with translated data is insufficient to outperform the strong baseline of finetuning a multilingual model with only source data. Instead, the best approach consists in the careful curation of translated data using MT Quality Estimation metrics, excluding low quality translations that hinder its performance.
Unsupervised hashing methods typically aim to preserve the similarity between data points in a feature space by mapping them to binary hash codes. However, these methods often overlook the fact that the similarity between data points in the continuous feature space may not be preserved in the discrete hash code space, due to the limited similarity range of hash codes. The similarity range is bounded by the code length and can lead to a problem known as similarity collapse. That is, the positive and negative pairs of data points become less distinguishable from each other in the hash space. To alleviate this problem, in this paper a novel Similarity Distribution Calibration (SDC) method is introduced. SDC aligns the hash code similarity distribution towards a calibration distribution (e.g., beta distribution) with sufficient spread across the entire similarity range, thus alleviating the similarity collapse problem. Extensive experiments show that our SDC outperforms significantly the state-of-the-art alternatives on coarse category-level and instance-level image retrieval. Code is available at //github.com/kamwoh/sdc.
Voxel-based segmentation volumes often store a large number of labels and voxels, and the resulting amount of data can make storage, transfer, and interactive visualization difficult. We present a lossless compression technique which addresses these challenges. It processes individual small bricks of a segmentation volume and compactly encodes the labelled regions and their boundaries by an iterative refinement scheme. The result for each brick is a list of labels, and a sequence of operations to reconstruct the brick which is further compressed using rANS-entropy coding. As the relative frequencies of operations are very similar across bricks, the entropy coding can use global frequency tables for an entire data set which enables efficient and effective parallel (de)compression. Our technique achieves high throughput (up to gigabytes per second both for compression and decompression) and strong compression ratios of about 1% to 3% of the original data set size while being applicable to GPU-based rendering. We evaluate our method for various data sets from different fields and demonstrate GPU-based volume visualization with on-the-fly decompression, level-of-detail rendering (with optional on-demand streaming of detail coefficients to the GPU), and a caching strategy for decompressed bricks for further performance improvement.
Ordinary differential equations (ODEs) are foundational in modeling intricate dynamics across a gamut of scientific disciplines. Yet, a possibility to represent a single phenomenon through multiple ODE models, driven by different understandings of nuances in internal mechanisms or abstraction levels, presents a model selection challenge. This study introduces a testing-based approach for ODE model selection amidst statistical noise. Rooted in the model misspecification framework, we adapt foundational insights from classical statistical paradigms (Vuong and Hotelling) to the ODE context, allowing for the comparison and ranking of diverse causal explanations without the constraints of nested models. Our simulation studies validate the theoretical robustness of our proposed test, revealing its consistent size and power. Real-world data examples further underscore the algorithm's applicability in practice. To foster accessibility and encourage real-world applications, we provide a user-friendly Python implementation of our model selection algorithm, bridging theoretical advancements with hands-on tools for the scientific community.
Physics informed neural networks (PINNs) represent a very powerful class of numerical solvers for partial differential equations using deep neural networks, and have been successfully applied to many diverse problems. However, when applying the method to problems involving singularity, e.g., point sources or geometric singularities, the obtained approximations often have low accuracy, due to limited regularity of the exact solution. In this work, we investigate PINNs for solving Poisson equations in polygonal domains with geometric singularities and mixed boundary conditions. We propose a novel singularity enriched PINN (SEPINN), by explicitly incorporating the singularity behavior of the analytic solution, e.g., corner singularity, mixed boundary condition and edge singularities, into the ansatz space, and present a convergence analysis of the scheme. We present extensive numerical simulations in two and three-dimensions to illustrate the efficiency of the method, and also a comparative study with existing neural network based approaches.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.
The inductive biases of graph representation learning algorithms are often encoded in the background geometry of their embedding space. In this paper, we show that general directed graphs can be effectively represented by an embedding model that combines three components: a pseudo-Riemannian metric structure, a non-trivial global topology, and a unique likelihood function that explicitly incorporates a preferred direction in embedding space. We demonstrate the representational capabilities of this method by applying it to the task of link prediction on a series of synthetic and real directed graphs from natural language applications and biology. In particular, we show that low-dimensional cylindrical Minkowski and anti-de Sitter spacetimes can produce equal or better graph representations than curved Riemannian manifolds of higher dimensions.