In the following report we propose pipelines for Goodness of Pronunciation (GoP) computation solving OOV problem at testing time using Vocab/Lexicon expansion techniques. The pipeline uses different components of ASR system to quantify accent and automatically evaluate them as scores. We use the posteriors of an ASR model trained on native English speech, along with the phone level boundaries to obtain phone level pronunciation scores. We used this as a baseline pipeline and implemented methods to remove UNK and SPN phonemes in the GoP output by building three pipelines. The Online, Offline and Hybrid pipeline which returns the scores but also can prevent unknown words in the final output. The Online method is based per utterance, Offline method pre-incorporates a set of OOV words for a given data set and the Hybrid method combines the above two ideas to expand the lexicon as well work per utterance. We further provide utilities such as the Phoneme to posterior mappings, GoP scores of each utterance as a vector, and Word boundaries used in the GoP pipeline for use in future research.
Construction Grammar (CxG) is a paradigm from cognitive linguistics emphasising the connection between syntax and semantics. Rather than rules that operate on lexical items, it posits constructions as the central building blocks of language, i.e., linguistic units of different granularity that combine syntax and semantics. As a first step towards assessing the compatibility of CxG with the syntactic and semantic knowledge demonstrated by state-of-the-art pretrained language models (PLMs), we present an investigation of their capability to classify and understand one of the most commonly studied constructions, the English comparative correlative (CC). We conduct experiments examining the classification accuracy of a syntactic probe on the one hand and the models' behaviour in a semantic application task on the other, with BERT, RoBERTa, and DeBERTa as the example PLMs. Our results show that all three investigated PLMs are able to recognise the structure of the CC but fail to use its meaning. While human-like performance of PLMs on many NLP tasks has been alleged, this indicates that PLMs still suffer from substantial shortcomings in central domains of linguistic knowledge.
Over the last years, word and sentence embeddings have established as text preprocessing for all kinds of NLP tasks and improved performances in these tasks significantly. Unfortunately, it has also been shown that these embeddings inherit various kinds of biases from the training data and thereby pass on biases present in society to NLP solutions. Many papers attempted to quantify bias in word or sentence embeddings to evaluate debiasing methods or compare different embedding models, often with cosine-based scores. However, some works have raised doubts about these scores showing that even though they report low biases, biases persist and can be shown with other tests. In fact, there is a great variety of bias scores or tests proposed in the literature without any consensus on the optimal solutions. We lack works that study the behavior of bias scores and elaborate their advantages and disadvantages. In this work, we will explore different cosine-based bias scores. We provide a bias definition based on the ideas from the literature and derive novel requirements for bias scores. Furthermore, we thoroughly investigate the existing cosine-based scores and their limitations in order to show why these scores fail to report biases in some situations. Finally, we propose a new bias score, SAME, to address the shortcomings of existing bias scores and show empirically that SAME is better suited to quantify biases in word embeddings.
Static information flow control (IFC) systems provide the ability to restrict data flows within a program, enabling vulnerable functionality or confidential data to be statically isolated from unsecured data or program logic. Despite the wide applicability of IFC as a mechanism for guaranteeing confidentiality and integrity -- the fundamental properties on which computer security relies -- existing IFC systems have seen little use, requiring users to reason about complicated mechanisms such as lattices of security labels and dual notions of confidentiality and integrity within these lattices. We propose a system that diverges significantly from previous work on information flow control, opting to reason directly about the data that programmers already work with. In doing so, we naturally and seamlessly combine the clasically separate notions of confidentiality and integrity into one unified framework, further simplifying reasoning. We motivate and showcase our work through two case studies on TLS private key management: one for Rocket, a popular Rust web framework, and another for Conduit, a server implementation for the Matrix messaging service written in Rust.
Model-based control requires an accurate model of the system dynamics for precisely and safely controlling the robot in complex and dynamic environments. Moreover, in presence of variations in the operating conditions, the model should be continuously refined to compensate for dynamics changes. In this paper, we propose a self-supervised learning approach to actively model robot discrete-time dynamics. We combine offline learning from past experience and online learning from present robot interaction with the unknown environment. These two ingredients enable highly sample-efficient and adaptive learning for accurate inference of the model dynamics in real-time even in operating regimes significantly different from the training distribution. Moreover, we design an uncertainty-aware model predictive controller that is conditioned to the aleatoric (data) uncertainty of the learned dynamics. The controller actively selects the optimal control actions that (i) optimize the control performance and (ii) boost the online learning sample efficiency. We apply the proposed method to a quadrotor system in multiple challenging real-world experiments. Our approach exhibits high flexibility and generalization capabilities by consistently adapting to unseen flight conditions, while it significantly outperforms classical and adaptive control baselines.
We have recently witnessed a number of impressive results on hard mathematical reasoning problems with language models. At the same time, the robustness of these models has also been called into question; recent works have shown that models can rely on shallow patterns in the problem description when predicting a solution. Building on the idea of behavioral testing, we propose a novel framework, which pins down the causal effect of various factors in the input, e.g., the surface form of the problem text, the operands and math operators on the output solution. By grounding the behavioral analysis in a causal graph describing an intuitive reasoning process, we study the behavior of language models in terms of robustness and sensitivity to direct interventions in the input space. We apply our framework on a test bed of bivariate math word problems. Our analysis shows that robustness does not appear to continuously improve as a function of scale, but that the recent LLM, GPT-3-Instruct (175B), achieves a dramatic improvement in both robustness and sensitivity, compared to all other GPT variants.
Neural network models trained on text data have been found to encode undesirable linguistic or sensitive concepts in their representation. Removing such concepts is non-trivial because of a complex relationship between the concept, text input, and the learnt representation. Recent work has proposed post-hoc and adversarial methods to remove such unwanted concepts from a model's representation. Through an extensive theoretical and empirical analysis, we show that these methods can be counter-productive: they are unable to remove the concepts entirely, and in the worst case may end up destroying all task-relevant features. The reason is the methods' reliance on a probing classifier as a proxy for the concept. Even under the most favorable conditions for learning a probing classifier when a concept's relevant features in representation space alone can provide 100% accuracy, we prove that a probing classifier is likely to use non-concept features and thus post-hoc or adversarial methods will fail to remove the concept correctly. These theoretical implications are confirmed by experiments on models trained on synthetic, Multi-NLI, and Twitter datasets. For sensitive applications of concept removal such as fairness, we recommend caution against using these methods and propose a spuriousness metric to gauge the quality of the final classifier.
Chinese spelling check (CSC) is a fundamental NLP task that detects and corrects spelling errors in Chinese texts. As most of these spelling errors are caused by phonetic similarity, effectively modeling the pronunciation of Chinese characters is a key factor for CSC. In this paper, we consider introducing an auxiliary task of Chinese pronunciation prediction (CPP) to improve CSC, and, for the first time, systematically discuss the adaptivity and granularity of this auxiliary task. We propose SCOPE which builds on top of a shared encoder two parallel decoders, one for the primary CSC task and the other for a fine-grained auxiliary CPP task, with a novel adaptive weighting scheme to balance the two tasks. In addition, we design a delicate iterative correction strategy for further improvements during inference. Empirical evaluation shows that SCOPE achieves new state-of-the-art on three CSC benchmarks, demonstrating the effectiveness and superiority of the auxiliary CPP task. Comprehensive ablation studies further verify the positive effects of adaptivity and granularity of the task. Code and data used in this paper are publicly available at //github.com/jiahaozhenbang/SCOPE.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Relation prediction for knowledge graphs aims at predicting missing relationships between entities. Despite the importance of inductive relation prediction, most previous works are limited to a transductive setting and cannot process previously unseen entities. The recent proposed subgraph-based relation reasoning models provided alternatives to predict links from the subgraph structure surrounding a candidate triplet inductively. However, we observe that these methods often neglect the directed nature of the extracted subgraph and weaken the role of relation information in the subgraph modeling. As a result, they fail to effectively handle the asymmetric/anti-symmetric triplets and produce insufficient embeddings for the target triplets. To this end, we introduce a \textbf{C}\textbf{o}mmunicative \textbf{M}essage \textbf{P}assing neural network for \textbf{I}nductive re\textbf{L}ation r\textbf{E}asoning, \textbf{CoMPILE}, that reasons over local directed subgraph structures and has a vigorous inductive bias to process entity-independent semantic relations. In contrast to existing models, CoMPILE strengthens the message interactions between edges and entitles through a communicative kernel and enables a sufficient flow of relation information. Moreover, we demonstrate that CoMPILE can naturally handle asymmetric/anti-symmetric relations without the need for explosively increasing the number of model parameters by extracting the directed enclosing subgraphs. Extensive experiments show substantial performance gains in comparison to state-of-the-art methods on commonly used benchmark datasets with variant inductive settings.
The recent proliferation of knowledge graphs (KGs) coupled with incomplete or partial information, in the form of missing relations (links) between entities, has fueled a lot of research on knowledge base completion (also known as relation prediction). Several recent works suggest that convolutional neural network (CNN) based models generate richer and more expressive feature embeddings and hence also perform well on relation prediction. However, we observe that these KG embeddings treat triples independently and thus fail to cover the complex and hidden information that is inherently implicit in the local neighborhood surrounding a triple. To this effect, our paper proposes a novel attention based feature embedding that captures both entity and relation features in any given entity's neighborhood. Additionally, we also encapsulate relation clusters and multihop relations in our model. Our empirical study offers insights into the efficacy of our attention based model and we show marked performance gains in comparison to state of the art methods on all datasets.