亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we propose an automatic trajectory data reconciliation to correct common errors in vision-based vehicle trajectory data. Given "raw" vehicle detection and tracking information from automatic video processing algorithms, we propose a pipeline including (a) an online data association algorithm to match fragments that describe the same object (vehicle), which is formulated as a min-cost network circulation problem of a graph, and (b) a one-step trajectory rectification procedure formulated as a quadratic program to enhance raw detection data. The pipeline leverages vehicle dynamics and physical constraints to associate tracked objects when they become fragmented, remove measurement noises and outliers and impute missing data due to fragmentations. We assess the capability of the proposed two-step pipeline to reconstruct three benchmarking datasets: (1) a microsimulation dataset that is artificially downgraded to replicate upstream errors, (2) a 15-min NGSIM data that is manually perturbed, and (3) tracking data consists of 3 scenes from collections of video data recorded from 16-17 cameras on a section of the I-24 MOTION system, and compare with the corresponding manually-labeled ground truth vehicle bounding boxes. All of the experiments show that the reconciled trajectories improve the accuracy on all the tested input data for a wide range of measures. Lastly, we show the design of a software architecture that is currently deployed on the full-scale I-24 MOTION system consisting of 276 cameras that covers 4.2 miles of I-24. We demonstrate the scalability of the proposed reconciliation pipeline to process high-volume data on a daily basis.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

In this paper we revisit the classical problem of classification, but impose privacy constraints. Under such constraints, the raw data $(X_1,Y_1),\ldots,(X_n,Y_n)$ cannot be directly observed, and all classifiers are functions of the randomised outcome of a suitable local differential privacy mechanism. The statistician is free to choose the form of this privacy mechanism, and here we add Laplace distributed noise to a discretisation of the location of each feature vector $X_i$ and to its label $Y_i$. The classification rule is the privatized version of the well-studied partitioning classification rule. In addition to the standard Lipschitz and margin conditions, a novel characteristic is introduced, by which the exact rate of convergence of the classification error probability is calculated, both for non-private and private data.

This paper presents the first application of the direct parametrisation method for invariant manifolds to a fully coupled multiphysics problem involving the nonlinear vibrations of deformable structures subjected to an electrostatic field. The formulation proposed is intended for model order reduction of electrostatically actuated resonating Micro-Electro-Mechanical Systems (MEMS). The continuous problem is first rewritten in a manner that can be directly handled by the parametrisation method, which relies upon automated asymptotic expansions. A new mixed fully Lagrangian formulation is thus proposed which contains only explicit polynomial nonlinearities, which is then discretised in the framework of finite element procedures. Validation is performed on the classical parallel plate configuration, where different formulations using either the general framework, or an approximation of the electrostatic field due to the geometric configuration selected, are compared. Reduced-order models along these formulations are also compared to full-order simulations operated with a time integration approach. Numerical results show a remarkable performance both in terms of accuracy and wealth of nonlinear effects that can be accounted for. In particular, the transition from hardening to softening behaviour of the primary resonance while increasing the constant voltage component of the electric actuation, is recovered. Secondary resonances leading to superharmonic and parametric resonances are also investigated with the reduced-order model.

Microring resonators (MRRs) are promising devices for time-delay photonic reservoir computing, but the impact of the different physical effects taking place in the MRRs on the reservoir computing performance is yet to be fully understood. We numerically analyze the impact of linear losses as well as thermo-optic and free-carrier effects relaxation times on the prediction error of the time-series task NARMA-10. We demonstrate the existence of three regions, defined by the input power and the frequency detuning between the optical source and the microring resonance, that reveal the cavity transition from linear to nonlinear regimes. One of these regions offers very low error in time-series prediction under relatively low input power and number of nodes while the other regions either lack nonlinearity or become unstable. This study provides insight into the design of the MRR and the optimization of its physical properties for improving the prediction performance of time-delay reservoir computing.

Many interesting physical problems described by systems of hyperbolic conservation laws are stiff, and thus impose a very small time-step because of the restrictive CFL stability condition. In this case, one can exploit the superior stability properties of implicit time integration which allows to choose the time-step only from accuracy requirements, and thus avoid the use of small time-steps. We discuss an efficient framework to devise high order implicit schemes for stiff hyperbolic systems without tailoring it to a specific problem. The nonlinearity of high order schemes, due to space- and time-limiting procedures which control nonphysical oscillations, makes the implicit time integration difficult, e.g.~because the discrete system is nonlinear also on linear problems. This nonlinearity of the scheme is circumvented as proposed in (Puppo et al., Comm.~Appl.~Math.~\& Comput., 2023) for scalar conservation laws, where a first order implicit predictor is computed to freeze the nonlinear coefficients of the essentially non-oscillatory space reconstruction, and also to assist limiting in time. In addition, we propose a novel conservative flux-centered a-posteriori time-limiting procedure using numerical entropy indicators to detect troubled cells. The numerical tests involve classical and artificially devised stiff problems using the Euler's system of gas-dynamics.

This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson point process in the important case where the intensity depends on covariates, based on the observation of a single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow information from far away locations in the observation window, enabling consistent inference in the growing domain asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the well established theory of Bayesian nonparametrics, here combined with concentration inequalities for functionals of stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The local rates are derived with an ad-hoc study that builds on recent advances in the theory of P\'olya tree priors, extended to the present multivariate setting with a novel construction that makes use of the random geometry induced by the covariates.

In this paper, we study the stability and convergence of a fully discrete finite difference scheme for the initial value problem associated with the Korteweg-De Vries (KdV) equation. We employ the Crank-Nicolson method for temporal discretization and establish that the scheme is $L^2$-conservative. The convergence analysis reveals that utilizing inherent Kato's local smoothing effect, the proposed scheme converges to a classical solution for sufficiently regular initial data $u_0 \in H^{3}(\mathbb{R})$ and to a weak solution in $L^2(0,T;L^2_{\text{loc}}(\mathbb{R}))$ for non-smooth initial data $u_0 \in L^2(\mathbb{R})$. Optimal convergence rates in both time and space for the devised scheme are derived. The theoretical results are justified through several numerical illustrations.

High-order tensor methods for solving both convex and nonconvex optimization problems have generated significant research interest, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of regularization. Developing efficient techniques for solving such subproblems is an ongoing topic of research, and this paper addresses the case of the third-order tensor subproblem. We propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with Quartic Regularisation, by minimizing a sequence of local quadratic models that incorporate simple cubic and quartic terms. The role of the cubic term is to crudely approximate local tensor information, while the quartic one controls model regularization and progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $\mathcal{O}(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases. We propose practical CQR variants that use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.

Disability insurance claims are often affected by lengthy reporting delays and adjudication processes. The classic multistate life insurance modeling framework is ill-suited to handle such information delays since the cash flow and available information can no longer be based on the biometric multistate process determining the contractual payments. We propose a new individual reserving model for disability insurance schemes which describes the claim evolution in real-time. Under suitable independence assumptions between the available information and the underlying biometric multistate process, we show that these new reserves may be calculated as natural modifications of the classic reserves. We propose suitable parametric estimators for the model constituents and a real data application shows the practical relevance of our concepts and results.

This paper introduces "Shai" a 10B level large language model specifically designed for the asset management industry, built upon an open-source foundational model. With continuous pre-training and fine-tuning using a targeted corpus, Shai demonstrates enhanced performance in tasks relevant to its domain, outperforming baseline models. Our research includes the development of an innovative evaluation framework, which integrates professional qualification exams, tailored tasks, open-ended question answering, and safety assessments, to comprehensively assess Shai's capabilities. Furthermore, we discuss the challenges and implications of utilizing large language models like GPT-4 for performance assessment in asset management, suggesting a combination of automated evaluation and human judgment. Shai's development, showcasing the potential and versatility of 10B-level large language models in the financial sector with significant performance and modest computational requirements, hopes to provide practical insights and methodologies to assist industry peers in their similar endeavors.

Graph-centric artificial intelligence (graph AI) has achieved remarkable success in modeling interacting systems prevalent in nature, from dynamical systems in biology to particle physics. The increasing heterogeneity of data calls for graph neural architectures that can combine multiple inductive biases. However, combining data from various sources is challenging because appropriate inductive bias may vary by data modality. Multimodal learning methods fuse multiple data modalities while leveraging cross-modal dependencies to address this challenge. Here, we survey 140 studies in graph-centric AI and realize that diverse data types are increasingly brought together using graphs and fed into sophisticated multimodal models. These models stratify into image-, language-, and knowledge-grounded multimodal learning. We put forward an algorithmic blueprint for multimodal graph learning based on this categorization. The blueprint serves as a way to group state-of-the-art architectures that treat multimodal data by choosing appropriately four different components. This effort can pave the way for standardizing the design of sophisticated multimodal architectures for highly complex real-world problems.

北京阿比特科技有限公司