We propose an optimization-based method for reconstructing a time-domain signal from a low-dimensional spectral representation such as a mel-spectrogram. Phase reconstruction has been studied to reconstruct a time-domain signal from the full-band short-time Fourier transform (STFT) magnitude. The Griffin-Lim algorithm (GLA) has been widely used because it relies only on the redundancy of STFT and is applicable to various audio signals. In this paper, we jointly reconstruct the full-band magnitude and phase by considering the bi-level relationships among the time-domain signal, its STFT coefficients, and its mel-spectrogram. The proposed method is formulated as a rigorous optimization problem and estimates the full-band magnitude based on the criterion used in GLA. Our experiments demonstrate the effectiveness of the proposed method on speech, music, and environmental signals.
The parallel alternating direction method of multipliers (ADMM) algorithms have gained popularity in statistics and machine learning for their efficient handling of large sample data problems. However, the parallel structure of these algorithms is based on the consensus problem, which can lead to an excessive number of auxiliary variables for high-dimensional data. In this paper, we propose a partition-insensitive parallel framework based on the linearized ADMM (LADMM) algorithm and apply it to solve nonconvex penalized smooth quantile regression problems. Compared to existing parallel ADMM algorithms, our algorithm does not rely on the consensus problem, resulting in a significant reduction in the number of variables that need to be updated at each iteration. It is worth noting that the solution of our algorithm remains unchanged regardless of how the total sample is divided, which is also known as partition-insensitivity. Furthermore, under some mild assumptions, we prove that the iterative sequence generated by the parallel LADMM algorithm converges to a critical point of the nonconvex optimization problem. Numerical experiments on synthetic and real datasets demonstrate the feasibility and validity of the proposed algorithm.
The need for improved network situational awareness has been highlighted by the growing complexity and severity of cyber-attacks. Mobile phones pose a significant risk to network situational awareness due to their dynamic behaviour and lack of visibility on a network. Machine learning techniques enhance situational awareness by providing administrators insight into the devices and activities which form their network. Developing machine learning techniques for situational awareness requires a testbed to generate and label network traffic. Current testbeds, however, are unable to automate the generation and labelling of realistic network traffic. To address this, we describe a testbed which automates applications on mobile devices to generate and label realistic traffic. From this testbed, two labelled datasets of network traffic have been created. We provide an analysis of the testbed automation reliability and benchmark the datasets for the task of application classification.
Speech emotion conversion is the task of converting the expressed emotion of a spoken utterance to a target emotion while preserving the lexical content and speaker identity. While most existing works in speech emotion conversion rely on acted-out datasets and parallel data samples, in this work we specifically focus on more challenging in-the-wild scenarios and do not rely on parallel data. To this end, we propose a diffusion-based generative model for speech emotion conversion, the EmoConv-Diff, that is trained to reconstruct an input utterance while also conditioning on its emotion. Subsequently, at inference, a target emotion embedding is employed to convert the emotion of the input utterance to the given target emotion. As opposed to performing emotion conversion on categorical representations, we use a continuous arousal dimension to represent emotions while also achieving intensity control. We validate the proposed methodology on a large in-the-wild dataset, the MSP-Podcast v1.10. Our results show that the proposed diffusion model is indeed capable of synthesizing speech with a controllable target emotion. Crucially, the proposed approach shows improved performance along the extreme values of arousal and thereby addresses a common challenge in the speech emotion conversion literature.
Distribution-dependent stochastic dynamical systems arise widely in engineering and science. We consider a class of such systems which model the limit behaviors of interacting particles moving in a vector field with random fluctuations. We aim to examine the most likely transition path between equilibrium stable states of the vector field. In the small noise regime, the action functional does not involve the solution of the skeleton equation which describes the unperturbed deterministic flow of the vector field shifted by the interaction at zero distance. As a result, we are led to study the most likely transition path for a stochastic differential equation without distribution dependency. This enables the computation of the most likely transition path for these distribution-dependent stochastic dynamical systems by the adaptive minimum action method and we illustrate our approach in two examples.
The myriad complex systems with multiway interactions motivate the extension of graph-based pairwise connections to higher-order relations. In particular, the simplicial complex has inspired generalizations of graph neural networks (GNNs) to simplicial complex-based models. Learning on such systems requires large amounts of data, which can be expensive or impossible to obtain. We propose data augmentation of simplicial complexes through both linear and nonlinear mixup mechanisms that return mixtures of existing labeled samples. In addition to traditional pairwise mixup, we present a convex clustering mixup approach for a data-driven relationship among several simplicial complexes. We theoretically demonstrate that the resultant synthetic simplicial complexes interpolate among existing data with respect to homomorphism densities. Our method is demonstrated on both synthetic and real-world datasets for simplicial complex classification.
The concept of updating a probability distribution in the light of new evidence lies at the heart of statistics and machine learning. Pearl's and Jeffrey's rule are two natural update mechanisms which lead to different outcomes, yet the similarities and differences remain mysterious. This paper clarifies their relationship in several ways: via separate descriptions of the two update mechanisms in terms of probabilistic programs and sampling semantics, and via different notions of likelihood (for Pearl and for Jeffrey). Moreover, it is shown that Jeffrey's update rule arises via variational inference. In terms of categorical probability theory, this amounts to an analysis of the situation in terms of the behaviour of the multiset functor, extended to the Kleisli category of the distribution monad.
We address the problem of coding for classical multiple-access channels (MACs) with the assistance of non-signaling correlations between parties. It is well-known that non-signaling assistance does not change the capacity of classical point-to-point channels. However, it was recently observed that one can construct MACs from two-player non-local games while relating the winning probability of the game to the capacity of the MAC. By considering games for which entanglement increases the winning probability, this shows that for some specific kinds of channels, entanglement between the senders can increase the capacity. We make several contributions towards understanding the capacity region for MACs with the assistance of non-signaling correlations. We develop a linear program computing the optimal success probability for coding over $n$ copies of a MAC $W$ with size growing polynomially in $n$. Solving this linear program allows us to achieve inner bounds for MACs. Applying this method to the binary adder channel, we show that using non-signaling assistance, the sum-rate $1.5425$ can be reached even with zero error, which beats the maximum sum-rate capacity of $1.5$ in the unassisted case. For noisy channels, where the zero-error non-signaling assisted capacity region is trivial, we can use concatenated codes to obtain achievable points in the capacity region. Applied to a noisy version of the binary adder channel, we show that non-signaling assistance still improves the sum-rate capacity. Complementing these achievability results, we give an outer bound on the non-signaling assisted capacity region that has the same expression as the unassisted region except that the channel inputs are not required to be independent. Finally, we show that the capacity region with non-signaling assistance shared only between each sender and the receiver independently is the same as without assistance.
At the core of the quest for a logic for PTime is a mismatch between algorithms making arbitrary choices and isomorphism-invariant logics. One approach to overcome this problem is witnessed symmetric choice. It allows for choices from definable orbits which are certified by definable witnessing automorphisms. We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The latter operator evaluates a subformula in the structure defined by an interpretation. This structure possibly has other automorphisms exploitable by the WSC-operator. For similar extensions of pure fixed-point logic (IFP) it is known that IFP+WSCI simulates counting which IFP+WSC fails to do. For IFPC+WSC it is unknown whether the interpretation operator increases expressiveness and thus allows studying the relation between WSC and interpretations beyond counting. We separate IFPC+WSC from IFPC+WSCI by showing that IFPC+WSC is not closed under FO-interpretations. By the same argument, we answer an open question of Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances.
Due to severe societal and environmental impacts, wildfire prediction using multi-modal sensing data has become a highly sought-after data-analytical tool by various stakeholders (such as state governments and power utility companies) to achieve a more informed understanding of wildfire activities and plan preventive measures. A desirable algorithm should precisely predict fire risk and magnitude for a location in real time. In this paper, we develop a flexible spatio-temporal wildfire prediction framework using multi-modal time series data. We first predict the wildfire risk (the chance of a wildfire event) in real-time, considering the historical events using discrete mutually exciting point process models. Then we further develop a wildfire magnitude prediction set method based on the flexible distribution-free time-series conformal prediction (CP) approach. Theoretically, we prove a risk model parameter recovery guarantee, as well as coverage and set size guarantees for the CP sets. Through extensive real-data experiments with wildfire data in California, we demonstrate the effectiveness of our methods, as well as their flexibility and scalability in large regions.
We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.