亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper is concerned with the lossy compression of general random variables, specifically with rate-distortion theory and quantization of random variables taking values in general measurable spaces such as, e.g., manifolds and fractal sets. Manifold structures are prevalent in data science, e.g., in compressed sensing, machine learning, image processing, and handwritten digit recognition. Fractal sets find application in image compression and in the modeling of Ethernet traffic. Our main contributions are bounds on the rate-distortion function and the quantization error. These bounds are very general and essentially only require the existence of reference measures satisfying certain regularity conditions in terms of small ball probabilities. To illustrate the wide applicability of our results, we particularize them to random variables taking values in i) manifolds, namely, hyperspheres and Grassmannians, and ii) self-similar sets characterized by iterated function systems satisfying the weak separation property.

相關內容

Directed Acyclic Graphs (DAGs) provide a powerful framework to model causal relationships among variables in multivariate settings; in addition, through the do-calculus theory, they allow for the identification and estimation of causal effects between variables also from pure observational data. In this setting, the process of inferring the DAG structure from the data is referred to as causal structure learning or causal discovery. We introduce BCDAG, an R package for Bayesian causal discovery and causal effect estimation from Gaussian observational data, implementing the Markov chain Monte Carlo (MCMC) scheme proposed by Castelletti & Mascaro (2021). Our implementation scales efficiently with the number of observations and, whenever the DAGs are sufficiently sparse, with the number of variables in the dataset. The package also provides functions for convergence diagnostics and for visualizing and summarizing posterior inference. In this paper, we present the key features of the underlying methodology along with its implementation in BCDAG. We then illustrate the main functions and algorithms on both real and simulated datasets.

Most data is automatically collected and only ever "seen" by algorithms. Yet, data compressors preserve perceptual fidelity rather than just the information needed by algorithms performing downstream tasks. In this paper, we characterize the bit-rate required to ensure high performance on all predictive tasks that are invariant under a set of transformations, such as data augmentations. Based on our theory, we design unsupervised objectives for training neural compressors. Using these objectives, we train a generic image compressor that achieves substantial rate savings (more than $1000\times$ on ImageNet) compared to JPEG on 8 datasets, without decreasing downstream classification performance.

Optimal $k$-thresholding algorithms are a class of sparse signal recovery algorithms that overcome the shortcomings of traditional hard thresholding algorithms caused by the oscillation of the residual function. In this paper, a novel convergence analysis for optimal $k$-thresholding algorithms is established, which reveals the data-time tradeoffs of these algorithms. Both the analysis and numerical results demonstrate that when the number of measurements is small, the algorithms cannot converge; when the number of measurements is suitably large, the number of iterations required for successful recovery has a negative correlation with the number of measurements, and the algorithms can achieve linear convergence. Furthermore, the main theorems indicate that the number of measurements required for successful recovery is on the order of $k \log({n}/{k})$, where $n$ is the dimension of the target signal.

Heterogeneous treatment effect models allow us to compare treatments at subgroup and individual levels, and are of increasing popularity in applications like personalized medicine, advertising, and education. In this talk, we first survey different causal estimands used in practice, which focus on estimating the difference in conditional means. We then propose DINA, the difference in natural parameters, to quantify heterogeneous treatment effect in exponential families and the Cox model. For binary outcomes and survival times, DINA is both convenient and more practical for modeling the influence of covariates on the treatment effect. Second, we introduce a meta-algorithm for DINA, which allows practitioners to use powerful off-the-shelf machine learning tools for the estimation of nuisance functions, and which is also statistically robust to errors in inaccurate nuisance function estimation. We demonstrate the efficacy of our method combined with various machine learning base-learners on simulated and real datasets.

We study the problem of common randomness (CR) generation in the basic two-party communication setting in which the sender and the receiver aim to agree on a common random variable with high probability by observing independent and identically distributed (i.i.d.) samples of correlated Gaussian sources and while communicating as little as possible over a noisy memoryless channel. We completely solve the problem by giving a single-letter characterization of the CR capacity for the proposed model and by providing a rigorous proof of it. Interestingly, we prove that the CR capacity is infinite when the Gaussian sources are perfectly correlated.

Most of the existing neural video compression methods adopt the predictive coding framework, which first generates the predicted frame and then encodes its residue with the current frame. However, as for compression ratio, predictive coding is only a sub-optimal solution as it uses simple subtraction operation to remove the redundancy across frames. In this paper, we propose a deep contextual video compression framework to enable a paradigm shift from predictive coding to conditional coding. In particular, we try to answer the following questions: how to define, use, and learn condition under a deep video compression framework. To tap the potential of conditional coding, we propose using feature domain context as condition. This enables us to leverage the high dimension context to carry rich information to both the encoder and the decoder, which helps reconstruct the high-frequency contents for higher video quality. Our framework is also extensible, in which the condition can be flexibly designed. Experiments show that our method can significantly outperform the previous state-of-the-art (SOTA) deep video compression methods. When compared with x265 using veryslow preset, we can achieve 26.0% bitrate saving for 1080P standard test videos.

Background: Recently, an extensive amount of research has been focused on compressing and accelerating Deep Neural Networks (DNNs). So far, high compression rate algorithms required the entire training dataset, or its subset, for fine-tuning and low precision calibration process. However, this requirement is unacceptable when sensitive data is involved as in medical and biometric use-cases. Contributions: We present three methods for generating synthetic samples from trained models. Then, we demonstrate how these samples can be used to fine-tune or to calibrate quantized models with negligible accuracy degradation compared to the original training set --- without using any real data in the process. Furthermore, we suggest that our best performing method, leveraging intrinsic batch normalization layers' statistics of a trained model, can be used to evaluate data similarity. Our approach opens a path towards genuine data-free model compression, alleviating the need for training data during deployment.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Most of the existing work on automatic facial expression analysis focuses on discrete emotion recognition, or facial action unit detection. However, facial expressions do not always fall neatly into pre-defined semantic categories. Also, the similarity between expressions measured in the action unit space need not correspond to how humans perceive expression similarity. Different from previous work, our goal is to describe facial expressions in a continuous fashion using a compact embedding space that mimics human visual preferences. To achieve this goal, we collect a large-scale faces-in-the-wild dataset with human annotations in the form: Expressions A and B are visually more similar when compared to expression C, and use this dataset to train a neural network that produces a compact (16-dimensional) expression embedding. We experimentally demonstrate that the learned embedding can be successfully used for various applications such as expression retrieval, photo album summarization, and emotion recognition. We also show that the embedding learned using the proposed dataset performs better than several other embeddings learned using existing emotion or action unit datasets.

Stochastic gradient Markov chain Monte Carlo (SGMCMC) has become a popular method for scalable Bayesian inference. These methods are based on sampling a discrete-time approximation to a continuous time process, such as the Langevin diffusion. When applied to distributions defined on a constrained space, such as the simplex, the time-discretisation error can dominate when we are near the boundary of the space. We demonstrate that while current SGMCMC methods for the simplex perform well in certain cases, they struggle with sparse simplex spaces; when many of the components are close to zero. However, most popular large-scale applications of Bayesian inference on simplex spaces, such as network or topic models, are sparse. We argue that this poor performance is due to the biases of SGMCMC caused by the discretization error. To get around this, we propose the stochastic CIR process, which removes all discretization error and we prove that samples from the stochastic CIR process are asymptotically unbiased. Use of the stochastic CIR process within a SGMCMC algorithm is shown to give substantially better performance for a topic model and a Dirichlet process mixture model than existing SGMCMC approaches.

北京阿比特科技有限公司