亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate how heterogeneous multi-robot systems with different sensing capabilities can observe a domain with an apriori unknown density function. Common coverage control techniques are targeted towards homogeneous teams of robots and do not consider what happens when the sensing capabilities of the robots are vastly different. This work proposes an extension to Lloyd's algorithm that fuses coverage information from heterogeneous robots with differing sensing capabilities to effectively observe a domain. Namely, we study a bimodal team of robots consisting of aerial and ground agents. In our problem formulation we use aerial robots with coarse domain sensors to approximate the number of ground robots needed within their sensing region to effectively cover it. This information is relayed to ground robots, who perform an extension to the Lloyd's algorithm that balances a locally focused coverage controller with a globally focused distribution controller. The stability of the Lloyd's algorithm extension is proven and its performance is evaluated through simulation and experiments using the Robotarium, a remotely-accessible, multi-robot testbed.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Planning for multi-robot teams in complex environments is a challenging problem, especially when these teams must coordinate to accomplish a common objective. In general, optimal solutions to these planning problems are computationally intractable, since the decision space grows exponentially with the number of robots. In this paper, we present a novel approach for multi-robot planning on topological graphs using mixed-integer programming. Central to our approach is the notion of a dynamic topological graph, where edge weights vary dynamically based on the locations of the robots in the graph. We construct this graph using the critical features of the planning problem and the relationships between robots; we then leverage mixed-integer programming to minimize a shared cost that depends on the paths of all robots through the graph. To improve computational tractability, we formulated our optimization problem with a fully convex relaxation and designed our decision space around eliminating the exponential dependence on the number of robots. We test our approach on a multi-robot reconnaissance scenario, where robots must coordinate to minimize detectability and maximize safety while gathering information. We demonstrate that our approach is able to scale to a series of representative scenarios and is capable of computing optimal coordinated strategic behaviors for autonomous multi-robot teams in seconds.

In this paper we present a practical Bayesian self-supervised learning method with Cyclical Stochastic Gradient Hamiltonian Monte Carlo (cSGHMC). Within this framework, we place a prior over the parameters of a self-supervised learning model and use cSGHMC to approximate the high dimensional and multimodal posterior distribution over the embeddings. By exploring an expressive posterior over the embeddings, Bayesian self-supervised learning produces interpretable and diverse representations. Marginalizing over these representations yields a significant gain in performance, calibration and out-of-distribution detection on a variety of downstream classification tasks. We provide experimental results on multiple classification tasks on four challenging datasets. Moreover, we demonstrate the effectiveness of the proposed method in out-of-distribution detection using the SVHN and CIFAR-10 datasets.

This paper discusses our approaches for task-oriented conversational modelling using subjective knowledge, with a particular emphasis on response generation. Our methodology was shaped by an extensive data analysis that evaluated key factors such as response length, sentiment, and dialogue acts present in the provided dataset. We used few-shot learning to augment the data with newly generated subjective knowledge items and present three approaches for DSTC11: (1) task-specific model exploration, (2) incorporation of the most frequent question into all generated responses, and (3) a waterfall prompting technique using a combination of both GPT-3 and ChatGPT.

Satisfiability Modulo Theories (SMT) has significant application in various domains. In this paper, we focus on quantifier-free Satisfiablity Modulo Real Arithmetic, referred to as SMT(RA), including both linear and non-linear real arithmetic theories. As for non-linear real arithmetic theory, we focus on one of its important fragments where the atomic constraints are multi-linear. We propose the first local search algorithm for SMT(RA), called LocalSMT(RA), based on two novel ideas. First, an interval-based operator is proposed to cooperate with the traditional local search operator by considering the interval information. Moreover, we propose a tie-breaking mechanism to further evaluate the operations when the operations are indistinguishable according to the score function. Experiments are conducted to evaluate LocalSMT(RA) on benchmarks from SMT-LIB. The results show that LocalSMT(RA) is competitive with the state-of-the-art SMT solvers, and performs particularly well on multi-linear instances.

In this work, we study a class of deception planning problems in which an agent aims to alter a security monitoring system's sensor readings so as to disguise its adversarial itinerary as an allowed itinerary in the environment. The adversarial itinerary set and allowed itinerary set are captured by regular languages. To deviate without being detected, we investigate whether there exists a strategy for the agent to alter the sensor readings, with a minimal cost, such that for any of those paths it takes, the system thinks the agent took a path within the allowed itinerary. Our formulation assumes an offline sensor alteration where the agent determines the sensor alteration strategy and implement it, and then carry out any path in its deviation itinerary. We prove that the problem of solving the optimal sensor alteration is NP-hard, by a reduction from the directed multi-cut problem. Further, we present an exact algorithm based on integer linear programming and demonstrate the correctness and the efficacy of the algorithm in case studies.

How do we design an AI system that is intended to act as a communication bridge between two user communities with different mental models and vocabularies? Skillsync is an interactive environment that engages employers (companies) and training providers (colleges) in a sustained dialogue to help them achieve the goal of building a training proposal that successfully meets the needs of the employers and employees. We used a variation of participatory design to elicit requirements for developing AskJill, a question-answering agent that explains how Skillsync works and thus acts as a communication bridge between company and college users. Our study finds that participatory design was useful in guiding the requirements gathering and eliciting user questions for the development of AskJill. Our results also suggest that the two Skillsync user communities perceived glossary assistance as a key feature that AskJill needs to offer, and they would benefit from such a shared vocabulary.

Bias amplification is a phenomenon in which models increase imbalances present in the training data. In this paper, we study bias amplification in the text-to-image domain using Stable Diffusion by comparing gender ratios in training vs. generated images. We find that the model appears to amplify gender-occupation biases found in the training data (LAION). However, we discover that amplification can largely be attributed to discrepancies between training captions and model prompts. For example, an inherent difference is that captions from the training data often contain explicit gender information while the prompts we use do not, which leads to a distribution shift and consequently impacts bias measures. Once we account for various distributional differences between texts used for training and generation, we observe that amplification decreases considerably. Our findings illustrate the challenges of comparing biases in models and the data they are trained on, and highlight confounding factors that contribute to bias amplification.

In this paper, we propose a deep reinforcement learning framework called GCOMB to learn algorithms that can solve combinatorial problems over large graphs. GCOMB mimics the greedy algorithm in the original problem and incrementally constructs a solution. The proposed framework utilizes Graph Convolutional Network (GCN) to generate node embeddings that predicts the potential nodes in the solution set from the entire node set. These embeddings enable an efficient training process to learn the greedy policy via Q-learning. Through extensive evaluation on several real and synthetic datasets containing up to a million nodes, we establish that GCOMB is up to 41% better than the state of the art, up to seven times faster than the greedy algorithm, robust and scalable to large dynamic networks.

In this paper, we propose a novel multi-task learning architecture, which incorporates recent advances in attention mechanisms. Our approach, the Multi-Task Attention Network (MTAN), consists of a single shared network containing a global feature pool, together with task-specific soft-attention modules, which are trainable in an end-to-end manner. These attention modules allow for learning of task-specific features from the global pool, whilst simultaneously allowing for features to be shared across different tasks. The architecture can be built upon any feed-forward neural network, is simple to implement, and is parameter efficient. Experiments on the CityScapes dataset show that our method outperforms several baselines in both single-task and multi-task learning, and is also more robust to the various weighting schemes in the multi-task loss function. We further explore the effectiveness of our method through experiments over a range of task complexities, and show how our method scales well with task complexity compared to baselines.

In this paper, we propose the joint learning attention and recurrent neural network (RNN) models for multi-label classification. While approaches based on the use of either model exist (e.g., for the task of image captioning), training such existing network architectures typically require pre-defined label sequences. For multi-label classification, it would be desirable to have a robust inference process, so that the prediction error would not propagate and thus affect the performance. Our proposed model uniquely integrates attention and Long Short Term Memory (LSTM) models, which not only addresses the above problem but also allows one to identify visual objects of interests with varying sizes without the prior knowledge of particular label ordering. More importantly, label co-occurrence information can be jointly exploited by our LSTM model. Finally, by advancing the technique of beam search, prediction of multiple labels can be efficiently achieved by our proposed network model.

北京阿比特科技有限公司