In this work, we study a class of deception planning problems in which an agent aims to alter a security monitoring system's sensor readings so as to disguise its adversarial itinerary as an allowed itinerary in the environment. The adversarial itinerary set and allowed itinerary set are captured by regular languages. To deviate without being detected, we investigate whether there exists a strategy for the agent to alter the sensor readings, with a minimal cost, such that for any of those paths it takes, the system thinks the agent took a path within the allowed itinerary. Our formulation assumes an offline sensor alteration where the agent determines the sensor alteration strategy and implement it, and then carry out any path in its deviation itinerary. We prove that the problem of solving the optimal sensor alteration is NP-hard, by a reduction from the directed multi-cut problem. Further, we present an exact algorithm based on integer linear programming and demonstrate the correctness and the efficacy of the algorithm in case studies.
In this work, we introduce OmniDrones, an efficient and flexible platform tailored for reinforcement learning in drone control, built on Nvidia's Omniverse Isaac Sim. It employs a bottom-up design approach that allows users to easily design and experiment with various application scenarios on top of GPU-parallelized simulations. It also offers a range of benchmark tasks, presenting challenges ranging from single-drone hovering to over-actuated system tracking. In summary, we propose an open-sourced drone simulation platform, equipped with an extensive suite of tools for drone learning. It includes 4 drone models, 5 sensor modalities, 4 control modes, over 10 benchmark tasks, and a selection of widely used RL baselines. To showcase the capabilities of OmniDrones and to support future research, we also provide preliminary results on these benchmark tasks. We hope this platform will encourage further studies on applying RL to practical drone systems.
Despite the recent success in data-driven fault diagnosis of rotating machines, there are still remaining challenges in this field. Among the issues to be addressed, is the lack of information about variety of faults the system may encounter in the field. In this paper, we assume a partial knowledge of the system faults and use the corresponding data to train a convolutional neural network. A combination of t-SNE method and clustering techniques is then employed to detect novel faults. Upon detection, the network is augmented using the new data. Finally, a test setup is used to validate this two-stage methodology on a centrifugal pump and experimental results show high accuracy in detecting novel faults.
Enriching the robot representation of the operational environment is a challenging task that aims at bridging the gap between low-level sensor readings and high-level semantic understanding. Having a rich representation often requires computationally demanding architectures and pure point cloud based detection systems that struggle when dealing with everyday objects that have to be handled by the robot. To overcome these issues, we propose a graph-based representation that addresses this gap by providing a semantic representation of robot environments from multiple sources. In fact, to acquire information from the environment, the framework combines classical computer vision tools with modern computer vision cloud services, ensuring computational feasibility on onboard hardware. By incorporating an ontology hierarchy with over 800 object classes, the framework achieves cross-domain adaptability, eliminating the need for environment-specific tools. The proposed approach allows us to handle also small objects and integrate them into the semantic representation of the environment. The approach is implemented in the Robot Operating System (ROS) using the RViz visualizer for environment representation. This work is a first step towards the development of a general-purpose framework, to facilitate intuitive interaction and navigation across different domains.
In an efficient and flexible human-robot collaborative work environment, a robot team member must be able to recognize both explicit requests and implied actions from human users. Identifying "what to do" in such cases requires an agent to have the ability to construct associations between objects, their actions, and the effect of actions on the environment. In this regard, semantic memory is being introduced to understand the explicit cues and their relationships with available objects and required skills to make "tea" and "sandwich". We have extended our previous hierarchical robot control architecture to add the capability to execute the most appropriate task based on both feedback from the user and the environmental context. To validate this system, two types of skills were implemented in the hierarchical task tree: 1) Tea making skills and 2) Sandwich making skills. During the conversation between the robot and the human, the robot was able to determine the hidden context using ontology and began to act accordingly. For instance, if the person says "I am thirsty" or "It is cold outside" the robot will start to perform the tea-making skill. In contrast, if the person says, "I am hungry" or "I need something to eat", the robot will make the sandwich. A humanoid robot Baxter was used for this experiment. We tested three scenarios with objects at different positions on the table for each skill. We observed that in all cases, the robot used only objects that were relevant to the skill.
We investigate in this work a recently emerging type of scam token called Trapdoor, which has caused the investors hundreds of millions of dollars in the period of 2020-2023. In a nutshell, by embedding logical bugs and/or owner-only features to the smart contract codes, a Trapdoor token allows users to buy but prevent them from selling. We develop the first systematic classification of Trapdoor tokens and a comprehensive list of their programming techniques, accompanied by a detailed analysis on representative scam contracts. We also construct the very first dataset of 1859 manually verified Trapdoor tokens on Uniswap and build effective opcode-based detection tools using popular machine learning classifiers such as Random Forest, XGBoost, and LightGBM, which achieve at least 0.98% accuracies, precisions, recalls, and F1-scores.
In many applications in data clustering, it is desirable to find not just a single partition into clusters but a sequence of partitions describing the data at different scales, or levels of coarseness. A natural problem then is to analyse and compare the (not necessarily hierarchical) sequences of partitions that underpin such multiscale descriptions of data. Here, we introduce a filtration of abstract simplicial complexes, denoted the Multiscale Clustering Filtration (MCF), which encodes arbitrary patterns of cluster assignments across scales, and we prove that the MCF produces stable persistence diagrams. We then show that the zero-dimensional persistent homology of the MCF measures the degree of hierarchy in the sequence of partitions, and that the higher-dimensional persistent homology tracks the emergence and resolution of conflicts between cluster assignments across the sequence of partitions. To broaden the theoretical foundations of the MCF, we also provide an equivalent construction via a nerve complex filtration, and we show that in the hierarchical case, the MCF reduces to a Vietoris-Rips filtration of an ultrametric space. We briefly illustrate how the MCF can serve to characterise multiscale clustering structures in numerical experiments on synthetic data.
The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in graphs, which serves as a crucial role in understanding the organization and functioning of complex systems. We begin by introducing the concept of community structure, which refers to the arrangement of vertices into clusters, with strong internal connections and weaker connections between clusters. Then, we provide a thorough exposition of various community detection methods, including a new method designed by us. Additionally, we explore real-world applications of community detection in diverse networks. In conclusion, this comprehensive review provides a deep understanding of community detection in graphs. It serves as a valuable resource for researchers and practitioners in multiple disciplines, offering insights into the challenges, methodologies, and applications of community detection in complex networks.
In this research, we explore the efficacy and potential of Generative AI models, specifically focusing on their application in role-playing simulations exemplified through Spyfall, a renowned mafia-style game. By leveraging GPT-4's advanced capabilities, the study aimed to showcase the model's potential in understanding, decision-making, and interaction during game scenarios. Comparative analyses between GPT-4 and its predecessor, GPT-3.5-turbo, demonstrated GPT-4's enhanced adaptability to the game environment, with significant improvements in posing relevant questions and forming human-like responses. However, challenges such as the model;s limitations in bluffing and predicting opponent moves emerged. Reflections on game development, financial constraints, and non-verbal limitations of the study were also discussed. The findings suggest that while GPT-4 exhibits promising advancements over earlier models, there remains potential for further development, especially in instilling more human-like attributes in AI.
In this work, we study the multi-agent assortment optimization problem in the two-sided sequential matching model introduced by Ashlagi et al. (2022). The setting is the following: we (the platform) offer a menu of suppliers to each customer. Then, every customer selects, simultaneously and independently, to match with a supplier or to remain unmatched. Each supplier observes the subset of customers that selected them, and choose either to match a customer or to leave the system. Therefore, a match takes place if both a customer and a supplier sequentially select each other. Each agent's behavior is probabilistic and determined by a discrete choice model. Our goal is to choose an assortment family that maximizes the expected revenue of the matching. Given the hardness of the problem, we show a $1-1/e$-approximation factor for the heterogeneous setting where customers follow general choice models and suppliers follow a general choice model whose demand function is monotone and submodular. Our approach is flexible enough to allow for different assortment constraints and for a revenue objective function. Furthermore, we design an algorithm that beats the $1-1/e$ barrier and, in fact, is asymptotically optimal when suppliers follow the classic multinomial-logit choice model and are sufficiently selective. We finally provide other results and further insights. Notably, in the unconstrained setting where customers and suppliers follow multinomial-logit models, we design a simple and efficient approximation algorithm that appropriately randomizes over a family of nested-assortments. Also, we analyze various aspects of the matching market model that lead to several operational insights, such as the fact that matching platforms can benefit from allowing the more selective agents to initiate the matchmaking process.
Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.