亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the recent success in data-driven fault diagnosis of rotating machines, there are still remaining challenges in this field. Among the issues to be addressed, is the lack of information about variety of faults the system may encounter in the field. In this paper, we assume a partial knowledge of the system faults and use the corresponding data to train a convolutional neural network. A combination of t-SNE method and clustering techniques is then employed to detect novel faults. Upon detection, the network is augmented using the new data. Finally, a test setup is used to validate this two-stage methodology on a centrifugal pump and experimental results show high accuracy in detecting novel faults.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Deep neural networks have emerged as the workhorse for a large section of robotics and control applications, especially as models for dynamical systems. Such data-driven models are in turn used for designing and verifying autonomous systems. They are particularly useful in modeling medical systems where data can be leveraged to individualize treatment. In safety-critical applications, it is important that the data-driven model is conformant to established knowledge from the natural sciences. Such knowledge is often available or can often be distilled into a (possibly black-box) model. For instance, an F1 racing car should conform to Newton's laws (which are encoded within a unicycle model). In this light, we consider the following problem - given a model $M$ and a state transition dataset, we wish to best approximate the system model while being a bounded distance away from $M$. We propose a method to guarantee this conformance. Our first step is to distill the dataset into a few representative samples called memories, using the idea of a growing neural gas. Next, using these memories we partition the state space into disjoint subsets and compute bounds that should be respected by the neural network in each subset. This serves as a symbolic wrapper for guaranteed conformance. We argue theoretically that this only leads to a bounded increase in approximation error; which can be controlled by increasing the number of memories. We experimentally show that on three case studies (Car Model, Drones, and Artificial Pancreas), our constrained neurosymbolic models conform to specified models (each encoding various constraints) with order-of-magnitude improvements compared to the augmented Lagrangian and vanilla training methods. Our code can be found at: //github.com/kaustubhsridhar/Constrained_Models

In the pursuit of accurate experimental and computational data while minimizing effort, there is a constant need for high-fidelity results. However, achieving such results often requires significant computational resources. To address this challenge, this paper proposes a deep operator learning-based framework that requires a limited high-fidelity dataset for training. We introduce a novel physics-guided, bi-fidelity, Fourier-featured Deep Operator Network (DeepONet) framework that effectively combines low and high-fidelity datasets, leveraging the strengths of each. In our methodology, we began by designing a physics-guided Fourier-featured DeepONet, drawing inspiration from the intrinsic physical behavior of the target solution. Subsequently, we train this network to primarily learn the low-fidelity solution, utilizing an extensive dataset. This process ensures a comprehensive grasp of the foundational solution patterns. Following this foundational learning, the low-fidelity deep operator network's output is enhanced using a physics-guided Fourier-featured residual deep operator network. This network refines the initial low-fidelity output, achieving the high-fidelity solution by employing a small high-fidelity dataset for training. Notably, in our framework, we employ the Fourier feature network as the Trunk network for the DeepONets, given its proficiency in capturing and learning the oscillatory nature of the target solution with high precision. We validate our approach using a well-known 2D benchmark cylinder problem, which aims to predict the time trajectories of lift and drag coefficients. The results highlight that the physics-guided Fourier-featured deep operator network, serving as a foundational building block of our framework, possesses superior predictive capability for the lift and drag coefficients compared to its data-driven counterparts.

Robotics has dramatically increased our ability to gather data about our environments, creating an opportunity for the robotics and algorithms communities to collaborate on novel solutions to environmental monitoring problems. To understand a taxonomy of problems and methods in this realm, we present the first comprehensive survey of decision-theoretic approaches that enable efficient sampling of various environmental processes. We investigate representations for different environments, followed by a discussion of using these presentations to solve tasks of interest, such as learning, localization, and monitoring. To efficiently implement the tasks, decision-theoretic optimization algorithms consider: (1) where to take measurements from, (2) which tasks to be assigned, (3) what samples to collect, (4) when to collect samples, (5) how to learn environment; and (6) who to communicate. Finally, we summarize our study and present the challenges and opportunities in robotic environmental monitoring.

In the burgeoning domain of distributed quantum computing, achieving consensus amidst adversarial settings remains a pivotal challenge. We introduce an enhancement to the Quantum Byzantine Agreement (QBA) protocol, uniquely incorporating advanced error mitigation techniques: Twirled Readout Error Extinction (T-REx) and dynamical decoupling (DD). Central to this refined approach is the utilization of a Noisy Intermediate Scale Quantum (NISQ) source device for heightened performance. Extensive tests on both simulated and real-world quantum devices, notably IBM's quantum computer, provide compelling evidence of the effectiveness of our T-REx and DD adaptations in mitigating prevalent quantum channel errors. Subsequent to the entanglement distribution, our protocol adopts a verification method reminiscent of Quantum Key Distribution (QKD) schemes. The Commander then issues orders encoded in specific quantum states, like Retreat or Attack. In situations where received orders diverge, lieutenants engage in structured games to reconcile discrepancies. Notably, the frequency of these games is contingent upon the Commander's strategies and the overall network size. Our empirical findings underscore the enhanced resilience and effectiveness of the protocol in diverse scenarios. Nonetheless, scalability emerges as a concern with the growth of the network size. To sum up, our research illuminates the considerable potential of fortified quantum consensus systems in the NISQ era, highlighting the imperative for sustained research in bolstering quantum ecosystems.

Modern policy optimization methods in reinforcement learning, such as TRPO and PPO, owe their success to the use of parameterized policies. However, while theoretical guarantees have been established for this class of algorithms, especially in the tabular setting, the use of general parameterization schemes remains mostly unjustified. In this work, we introduce a novel framework for policy optimization based on mirror descent that naturally accommodates general parameterizations. The policy class induced by our scheme recovers known classes, e.g., softmax, and generates new ones depending on the choice of mirror map. Using our framework, we obtain the first result that guarantees linear convergence for a policy-gradient-based method involving general parameterization. To demonstrate the ability of our framework to accommodate general parameterization schemes, we provide its sample complexity when using shallow neural networks, show that it represents an improvement upon the previous best results, and empirically validate the effectiveness of our theoretical claims on classic control tasks.

Control of legged robots is a challenging problem that has been investigated by different approaches, such as model-based control and learning algorithms. This work proposes a novel Imitating and Finetuning Model Predictive Control (IFM) framework to take the strengths of both approaches. Our framework first develops a conventional model predictive controller (MPC) using Differential Dynamic Programming and Raibert heuristic, which serves as an expert policy. Then we train a clone of the MPC using imitation learning to make the controller learnable. Finally, we leverage deep reinforcement learning with limited exploration for further finetuning the policy on more challenging terrains. By conducting comprehensive simulation and hardware experiments, we demonstrate that the proposed IFM framework can significantly improve the performance of the given MPC controller on rough, slippery, and conveyor terrains that require careful coordination of footsteps. We also showcase that IFM can efficiently produce more symmetric, periodic, and energy-efficient gaits compared to Vanilla RL with a minimal burden of reward shaping.

Unsupervised anomaly segmentation aims to detect patterns that are distinct from any patterns processed during training, commonly called abnormal or out-of-distribution patterns, without providing any associated manual segmentations. Since anomalies during deployment can lead to model failure, detecting the anomaly can enhance the reliability of models, which is valuable in high-risk domains like medical imaging. This paper introduces Masked Modality Cycles with Conditional Diffusion (MMCCD), a method that enables segmentation of anomalies across diverse patterns in multimodal MRI. The method is based on two fundamental ideas. First, we propose the use of cyclic modality translation as a mechanism for enabling abnormality detection. Image-translation models learn tissue-specific modality mappings, which are characteristic of tissue physiology. Thus, these learned mappings fail to translate tissues or image patterns that have never been encountered during training, and the error enables their segmentation. Furthermore, we combine image translation with a masked conditional diffusion model, which attempts to `imagine' what tissue exists under a masked area, further exposing unknown patterns as the generative model fails to recreate them. We evaluate our method on a proxy task by training on healthy-looking slices of BraTS2021 multi-modality MRIs and testing on slices with tumors. We show that our method compares favorably to previous unsupervised approaches based on image reconstruction and denoising with autoencoders and diffusion models.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

Over the past few years, the rapid development of deep learning technologies for computer vision has greatly promoted the performance of medical image segmentation (MedISeg). However, the recent MedISeg publications usually focus on presentations of the major contributions (e.g., network architectures, training strategies, and loss functions) while unwittingly ignoring some marginal implementation details (also known as "tricks"), leading to a potential problem of the unfair experimental result comparisons. In this paper, we collect a series of MedISeg tricks for different model implementation phases (i.e., pre-training model, data pre-processing, data augmentation, model implementation, model inference, and result post-processing), and experimentally explore the effectiveness of these tricks on the consistent baseline models. Compared to paper-driven surveys that only blandly focus on the advantages and limitation analyses of segmentation models, our work provides a large number of solid experiments and is more technically operable. With the extensive experimental results on both the representative 2D and 3D medical image datasets, we explicitly clarify the effect of these tricks. Moreover, based on the surveyed tricks, we also open-sourced a strong MedISeg repository, where each of its components has the advantage of plug-and-play. We believe that this milestone work not only completes a comprehensive and complementary survey of the state-of-the-art MedISeg approaches, but also offers a practical guide for addressing the future medical image processing challenges including but not limited to small dataset learning, class imbalance learning, multi-modality learning, and domain adaptation. The code has been released at: //github.com/hust-linyi/MedISeg

Data processing and analytics are fundamental and pervasive. Algorithms play a vital role in data processing and analytics where many algorithm designs have incorporated heuristics and general rules from human knowledge and experience to improve their effectiveness. Recently, reinforcement learning, deep reinforcement learning (DRL) in particular, is increasingly explored and exploited in many areas because it can learn better strategies in complicated environments it is interacting with than statically designed algorithms. Motivated by this trend, we provide a comprehensive review of recent works focusing on utilizing DRL to improve data processing and analytics. First, we present an introduction to key concepts, theories, and methods in DRL. Next, we discuss DRL deployment on database systems, facilitating data processing and analytics in various aspects, including data organization, scheduling, tuning, and indexing. Then, we survey the application of DRL in data processing and analytics, ranging from data preparation, natural language processing to healthcare, fintech, etc. Finally, we discuss important open challenges and future research directions of using DRL in data processing and analytics.

北京阿比特科技有限公司