In this paper a set of previous general results for the development of B--series for a broad class of stochastic differential equations has been collected. The applicability of these results is demonstrated by the derivation of B--series for non-autonomous semi-linear SDEs and exponential Runge-Kutta methods applied to this class of SDEs, which is a significant generalization of existing theory on such methods.
In many practical control applications, the performance level of a closed-loop system degrades over time due to the change of plant characteristics. Thus, there is a strong need for redesigning a controller without going through the system modeling process, which is often difficult for closed-loop systems. Reinforcement learning (RL) is one of the promising approaches that enable model-free redesign of optimal controllers for nonlinear dynamical systems based only on the measurement of the closed-loop system. However, the learning process of RL usually requires a considerable number of trial-and-error experiments using the poorly controlled system that may accumulate wear on the plant. To overcome this limitation, we propose a model-free two-step design approach that improves the transient learning performance of RL in an optimal regulator redesign problem for unknown nonlinear systems. Specifically, we first design a linear control law that attains some degree of control performance in a model-free manner, and then, train the nonlinear optimal control law with online RL by using the designed linear control law in parallel. We introduce an offline RL algorithm for the design of the linear control law and theoretically guarantee its convergence to the LQR controller under mild assumptions. Numerical simulations show that the proposed approach improves the transient learning performance and efficiency in hyperparameter tuning of RL.
We present compact semi-implicit finite difference schemes on structured grids for numerical solutions of the advection by an external velocity and by a speed in normal direction that are applicable in level set methods. The most involved numerical scheme is third order accurate for the linear advection with a space dependent velocity and unconditionally stable in the sense of von Neumann stability analysis. We also present a simple high-resolution scheme that gives a TVD (Total Variation Diminishing) approximation of the spatial derivative for the advected level set function. In the case of nonlinear advection, the semi-implicit discretization is proposed to linearize the problem. The compact form of implicit stencil in numerical schemes containing unknowns only in the upwind direction allows applications of efficient algebraic solvers like fast sweeping methods. Numerical tests to evolve a smooth and non-smooth interface and an example with a large variation of velocity confirm the good accuracy of the methods and fast convergence of the algebraic solver even in the case of very large Courant numbers.
This paper presents an experiment of automatically scoring handwritten descriptive answers in the trial tests for the new Japanese university entrance examination, which were made for about 120,000 examinees in 2017 and 2018. There are about 400,000 answers with more than 20 million characters. Although all answers have been scored by human examiners, handwritten characters are not labeled. We present our attempt to adapt deep neural network-based handwriting recognizers trained on a labeled handwriting dataset into this unlabeled answer set. Our proposed method combines different training strategies, ensembles multiple recognizers, and uses a language model built from a large general corpus to avoid overfitting into specific data. In our experiment, the proposed method records character accuracy of over 97% using about 2,000 verified labeled answers that account for less than 0.5% of the dataset. Then, the recognized answers are fed into a pre-trained automatic scoring system based on the BERT model without correcting misrecognized characters and providing rubric annotations. The automatic scoring system achieves from 0.84 to 0.98 of Quadratic Weighted Kappa (QWK). As QWK is over 0.8, it represents an acceptable similarity of scoring between the automatic scoring system and the human examiners. These results are promising for further research on end-to-end automatic scoring of descriptive answers.
Recently, Eldan, Koehler, and Zeitouni (2020) showed that Glauber dynamics mixes rapidly for general Ising models so long as the difference between the largest and smallest eigenvalues of the coupling matrix is at most $1 - \epsilon$ for any fixed $\epsilon > 0$. We give evidence that Glauber dynamics is in fact optimal for this "general-purpose sampling" task. Namely, we give an average-case reduction from hypothesis testing in a Wishart negatively-spiked matrix model to approximately sampling from the Gibbs measure of a general Ising model for which the difference between the largest and smallest eigenvalues of the coupling matrix is at most $1 + \epsilon$ for any fixed $\epsilon > 0$. Combined with results of Bandeira, Kunisky, and Wein (2019) that analyze low-degree polynomial algorithms to give evidence for the hardness of the former spiked matrix problem, our results in turn give evidence for the hardness of general-purpose sampling improving on Glauber dynamics. We also give a similar reduction to approximating the free energy of general Ising models, and again infer evidence that simulated annealing algorithms based on Glauber dynamics are optimal in the general-purpose setting.
We propose novel optimal and parameter-free algorithms for computing an approximate solution with small (projected) gradient norm. Specifically, for computing an approximate solution such that the norm of its (projected) gradient does not exceed $\varepsilon$, we obtain the following results: a) for the convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L\|x_0 - x^*\|/\varepsilon}$, where $L$ is the Lipschitz constant of the gradient and $x^*$ is any optimal solution; b) for the strongly convex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{L/\mu}\log(\|\nabla f(x_0)\|/\epsilon)$, where $\mu$ is the strong convexity modulus; and c) for the nonconvex case, the total number of gradient evaluations is bounded by $O(1)\sqrt{Ll}(f(x_0) - f(x^*))/\varepsilon^2$, where $l$ is the lower curvature constant. Our complexity results match the lower complexity bounds of the convex and strongly cases, and achieve the above best-known complexity bound for the nonconvex case for the first time in the literature. Moreover, for all the convex, strongly convex, and nonconvex cases, we propose parameter-free algorithms that do not require the input of any problem parameters. To the best of our knowledge, there do not exist such parameter-free methods before especially for the strongly convex and nonconvex cases. Since most regularity conditions (e.g., strong convexity and lower curvature) are imposed over a global scope, the corresponding problem parameters are notoriously difficult to estimate. However, gradient norm minimization equips us with a convenient tool to monitor the progress of algorithms and thus the ability to estimate such parameters in-situ.
Positron Emission Tomography (PET) enables functional imaging of deep brain structures, but the bulk and weight of current systems preclude their use during many natural human activities, such as locomotion. The proposed long-term solution is to construct a robotic system that can support an imaging system surrounding the subject's head, and then move the system to accommodate natural motion. This requires a system to measure the motion of the head with respect to the imaging ring, for use by both the robotic system and the image reconstruction software. We report here the design, calibration, and experimental evaluation of a parallel string encoder mechanism for sensing this motion. Our results indicate that with kinematic calibration, the measurement system can achieve accuracy within 0.5mm, especially for small motions.
We consider M-estimators and derive supremal-inequalities of exponential-or polynomial type according as a boundedness- or a moment-condition is fulfilled. This enables us to derive rates of r-complete convergence and also to show r-qick convergence in the sense of Strasser.
Prediction models are used amongst others to inform medical decisions on interventions. Typically, individuals with high risks of adverse outcomes are advised to undergo an intervention while those at low risk are advised to refrain from it. Standard prediction models do not always provide risks that are relevant to inform such decisions: e.g., an individual may be estimated to be at low risk because similar individuals in the past received an intervention which lowered their risk. Therefore, prediction models supporting decisions should target risks belonging to defined intervention strategies. Previous works on prediction under interventions assumed that the prediction model was used only at one time point to make an intervention decision. In clinical practice, intervention decisions are rarely made only once: they might be repeated, deferred and re-evaluated. This requires estimated risks under interventions that can be reconsidered at several potential decision moments. In the current work, we highlight key considerations for formulating estimands in sequential prediction under interventions that can inform such intervention decisions. We illustrate these considerations by giving examples of estimands for a case study about choosing between vaginal delivery and cesarean section for women giving birth. Our formalization of prediction tasks in a sequential, causal, and estimand context provides guidance for future studies to ensure that the right question is answered and appropriate causal estimation approaches are chosen to develop sequential prediction models that can inform intervention decisions.
Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression methods based on fusion penalties are presented. The first one is a generalization of the variable fusion methodology based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.
A novel method for detecting faults in power grids using a graph neural network (GNN) has been developed, aimed at enhancing intelligent fault diagnosis in network operation and maintenance. This GNN-based approach identifies faulty nodes within the power grid through a specialized electrical feature extraction model coupled with a knowledge graph. Incorporating temporal data, the method leverages the status of nodes from preceding and subsequent time periods to aid in current fault detection. To validate the effectiveness of this GNN in extracting node features, a correlation analysis of the output features from each node within the neural network layer was conducted. The results from experiments show that this method can accurately locate fault nodes in simulated scenarios with a remarkable 99.53% accuracy. Additionally, the graph neural network's feature modeling allows for a qualitative examination of how faults spread across nodes, providing valuable insights for analyzing fault nodes.