Recently, Eldan, Koehler, and Zeitouni (2020) showed that Glauber dynamics mixes rapidly for general Ising models so long as the difference between the largest and smallest eigenvalues of the coupling matrix is at most $1 - \epsilon$ for any fixed $\epsilon > 0$. We give evidence that Glauber dynamics is in fact optimal for this "general-purpose sampling" task. Namely, we give an average-case reduction from hypothesis testing in a Wishart negatively-spiked matrix model to approximately sampling from the Gibbs measure of a general Ising model for which the difference between the largest and smallest eigenvalues of the coupling matrix is at most $1 + \epsilon$ for any fixed $\epsilon > 0$. Combined with results of Bandeira, Kunisky, and Wein (2019) that analyze low-degree polynomial algorithms to give evidence for the hardness of the former spiked matrix problem, our results in turn give evidence for the hardness of general-purpose sampling improving on Glauber dynamics. We also give a similar reduction to approximating the free energy of general Ising models, and again infer evidence that simulated annealing algorithms based on Glauber dynamics are optimal in the general-purpose setting.
Computational modeling of the melt pool dynamics in laser-based powder bed fusion metal additive manufacturing (PBF-LB/M) promises to shed light on fundamental defect generation mechanisms. These processes are typically accompanied by rapid evaporation so that the evaporation-induced recoil pressure and cooling arise as major driving forces for fluid dynamics and temperature evolution. The magnitude of these interface fluxes depends exponentially on the melt pool surface temperature, which, therefore, must be predicted with high accuracy. The present work utilizes a diffuse interface model based on a continuum surface flux (CSF) description on the interfaces to study dimensionally reduced thermal two-phase problems representing PBF-LB/M in a finite element framework. It is demonstrated that the extreme temperature gradients combined with the high ratios of material properties between metal and ambient gas lead to significant errors in the interface temperatures and fluxes when classical CSF approaches, along with typical interface thicknesses and discretizations, are applied. A novel parameter-scaled CSF approach is proposed, which is constructed to yield a smoother temperature rate in the diffuse interface region, significantly increasing the solution accuracy. The interface thickness required to predict the temperature field with a given level of accuracy is less restrictive by at least one order of magnitude for the proposed parameter-scaled CSF approach compared to classical CSF, drastically reducing computational costs. Finally, we showcased the general applicability of the parameter-scaled CSF to a three-dimensional simulation of stationary laser melting of PBF-LB/M considering the fully coupled thermo-hydrodynamic multi-phase problem, including phase change.
We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.
Recently, a family of unconventional integrators for ODEs with polynomial vector fields was proposed, based on the polarization of vector fields. The simplest instance is the by now famous Kahan discretization for quadratic vector fields. All these integrators seem to possess remarkable conservation properties. In particular, it has been proved that, when the underlying ODE is Hamiltonian, its polarization discretization possesses an integral of motion and an invariant volume form. In this note, we propose a new algebraic approach to derivation of the integrals of motion for polarization discretizations.
It is well known that for singular inconsistent range-symmetric linear systems, the generalized minimal residual (GMRES) method determines a least squares solution without breakdown. The reached least squares solution may be or not be the pseudoinverse solution. We show that a lift strategy can be used to obtain the pseudoinverse solution. In addition, we propose a new iterative method named RSMAR (minimum $\mathbf A$-residual) for range-symmetric linear systems $\mathbf A\mathbf x=\mathbf b$. At step $k$ RSMAR minimizes $\|\mathbf A\mathbf r_k\|$ in the $k$th Krylov subspace generated with $\{\mathbf A, \mathbf r_0\}$ rather than $\|\mathbf r_k\|$, where $\mathbf r_k$ is the $k$th residual vector and $\|\cdot\|$ denotes the Euclidean vector norm. We show that RSMAR and GMRES terminate with the same least squares solution when applied to range-symmetric linear systems. We provide two implementations for RSMAR. Our numerical experiments show that RSMAR is the most suitable method among GMRES-type methods for singular inconsistent range-symmetric linear systems.
The Boundary Element Method (BEM) is implemented using piecewise linear elements to solve the two-dimensional Dirichlet problem for Laplace's equation posed on a disk. A benefit of the BEM as opposed to many other numerical solution techniques is that discretization only occurs on the boundary, i.e., the complete domain does not need to be discretized. This provides an advantage in terms of time and cost. The algorithm's performance is illustrated through sample test problems with known solutions. A comparison between the exact solution and the BEM numerical solution is done, and error analysis is performed on the results.
Comparisons of frequency distributions often invoke the concept of shift to describe directional changes in properties such as the mean. In the present study, we sought to define shift as a property in and of itself. Specifically, we define distributional shift (DS) as the concentration of frequencies away from the discrete class having the greatest value (e.g., the right-most bin of a histogram). We derive a measure of DS using the normalized sum of exponentiated cumulative frequencies. We then define relative distributional shift (RDS) as the difference in DS between two distributions, revealing the magnitude and direction by which one distribution is concentrated to lesser or greater discrete classes relative to another. We find that RDS is highly related to popular measures that, while based on the comparison of frequency distributions, do not explicitly consider shift. While RDS provides a useful complement to other comparative measures, DS allows shift to be quantified as a property of individual distributions, similar in concept to a statistical moment.
Large-scale language-vision pre-training models, such as CLIP, have achieved remarkable text-guided image morphing results by leveraging several unconditional generative models. However, existing CLIP-guided image morphing methods encounter difficulties when morphing photorealistic images. Specifically, existing guidance fails to provide detailed explanations of the morphing regions within the image, leading to misguidance. In this paper, we observed that such misguidance could be effectively mitigated by simply using a proper regularization loss. Our approach comprises two key components: 1) a geodesic cosine similarity loss that minimizes inter-modality features (i.e., image and text) on a projected subspace of CLIP space, and 2) a latent regularization loss that minimizes intra-modality features (i.e., image and image) on the image manifold. By replacing the na\"ive directional CLIP loss in a drop-in replacement manner, our method achieves superior morphing results on both images and videos for various benchmarks, including CLIP-inversion.
This paper analyzes the stability of the class of Time-Accurate and Highly-Stable Explicit Runge-Kutta (TASE-RK) methods, introduced in 2021 by Bassenne et al. (J. Comput. Phys.) for the numerical solution of stiff Initial Value Problems (IVPs). Such numerical methods are easy to implement and require the solution of a limited number of linear systems per step, whose coefficient matrices involve the exact Jacobian $J$ of the problem. To significantly reduce the computational cost of TASE-RK methods without altering their consistency properties, it is possible to replace $J$ with a matrix $A$ (not necessarily tied to $J$) in their formulation, for instance fixed for a certain number of consecutive steps or even constant. However, the stability properties of TASE-RK methods strongly depend on this choice, and so far have been studied assuming $A=J$. In this manuscript, we theoretically investigate the conditional and unconditional stability of TASE-RK methods by considering arbitrary $A$. To this end, we first split the Jacobian as $J=A+B$. Then, through the use of stability diagrams and their connections with the field of values, we analyze both the case in which $A$ and $B$ are simultaneously diagonalizable and not. Numerical experiments, conducted on Partial Differential Equations (PDEs) arising from applications, show the correctness and utility of the theoretical results derived in the paper, as well as the good stability and efficiency of TASE-RK methods when $A$ is suitably chosen.
We present a novel discontinuous Galerkin finite element method for numerical simulations of the rotating thermal shallow water equations in complex geometries using curvilinear meshes, with arbitrary accuracy. We derive an entropy functional which is convex, and which must be preserved in order to preserve model stability at the discrete level. The numerical method is provably entropy stable and conserves mass, buoyancy, vorticity, and energy. This is achieved by using novel entropy stable numerical fluxes, summation-by-parts principle, and splitting the pressure and convection operators so that we can circumvent the use of chain rule at the discrete level. Numerical simulations on a cubed sphere mesh are presented to verify the theoretical results. The numerical experiments demonstrate the robustness of the method for a regime of well developed turbulence, where it can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence, eliminating the need for artificial stabilisation.
We develop a novel and efficient discontinuous Galerkin spectral element method (DG-SEM) for the spherical rotating shallow water equations in vector invariant form. We prove that the DG-SEM is energy stable, and discretely conserves mass, vorticity, and linear geostrophic balance on general curvlinear meshes. These theoretical results are possible due to our novel entropy stable numerical DG fluxes for the shallow water equations in vector invariant form. We experimentally verify these results on a cubed sphere mesh. Additionally, we show that our method is robust, that is can be run stably without any dissipation. The entropy stable fluxes are sufficient to control the grid scale noise generated by geostrophic turbulence without the need for artificial stabilisation.