We study the complexity (that is, the weight of the multiplication table) of the elliptic normal bases introduced by Couveignes and Lercier. We give an upper bound on the complexity of these elliptic normal bases, and we analyze the weight of some special vectors related to the multiplication table of those bases. This analysis leads us to some perspectives on the search for low complexity normal bases from elliptic periods.
As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in a partial algorithm which uses a constraint-postponement strategy for trying to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.
For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we address challenges (i) and (ii), supporting our theory with numerical experiments. Challenge (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Challenge (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the set of valid coefficient vectors. The coefficient vector can then be selected using either a least squares approach or column subset selection.
We introduce a multiphysics and geometric multiscale computational model, suitable to describe the hemodynamics of the whole human heart, driven by a four-chamber electromechanical model. We first present a study on the calibration of the biophysically detailed RDQ20 activation model (Regazzoni et al., 2020) that is able to reproduce the physiological range of hemodynamic biomarkers. Then, we demonstrate that the ability of the force generation model to reproduce certain microscale mechanisms, such as the dependence of force on fiber shortening velocity, is crucial to capture the overall physiological mechanical and fluid dynamics macroscale behavior. This motivates the need for using multiscale models with high biophysical fidelity, even when the outputs of interest are relative to the macroscale. We show that the use of a high-fidelity electromechanical model, combined with a detailed calibration process, allows us to achieve remarkable biophysical fidelity in terms of both mechanical and hemodynamic quantities. Indeed, our electromechanical-driven CFD simulations - carried out on an anatomically accurate geometry of the whole heart - provide results that match the cardiac physiology both qualitatively (in terms of flow patterns) and quantitatively (when comparing in silico results with biomarkers acquired in vivo). We consider the pathological case of left bundle branch block, and we investigate the consequences that an electrical abnormality has on cardiac hemodynamics thanks to our multiphysics integrated model. The computational model that we propose can faithfully predict a delay and an increasing wall shear stress in the left ventricle in the pathological condition. The interaction of different physical processes in an integrated framework allows us to faithfully describe and model this pathology, by capturing and reproducing the intrinsic multiphysics nature of the human heart.
Deep learning methods have access to be employed for solving physical systems governed by parametric partial differential equations (PDEs) due to massive scientific data. It has been refined to operator learning that focuses on learning non-linear mapping between infinite-dimensional function spaces, offering interface from observations to solutions. However, state-of-the-art neural operators are limited to constant and uniform discretization, thereby leading to deficiency in generalization on arbitrary discretization schemes for computational domain. In this work, we propose a novel operator learning algorithm, referred to as Dynamic Gaussian Graph Operator (DGGO) that expands neural operators to learning parametric PDEs in arbitrary discrete mechanics problems. The Dynamic Gaussian Graph (DGG) kernel learns to map the observation vectors defined in general Euclidean space to metric vectors defined in high-dimensional uniform metric space. The DGG integral kernel is parameterized by Gaussian kernel weighted Riemann sum approximating and using dynamic message passing graph to depict the interrelation within the integral term. Fourier Neural Operator is selected to localize the metric vectors on spatial and frequency domains. Metric vectors are regarded as located on latent uniform domain, wherein spatial and spectral transformation offer highly regular constraints on solution space. The efficiency and robustness of DGGO are validated by applying it to solve numerical arbitrary discrete mechanics problems in comparison with mainstream neural operators. Ablation experiments are implemented to demonstrate the effectiveness of spatial transformation in the DGG kernel. The proposed method is utilized to forecast stress field of hyper-elastic material with geometrically variable void as engineering application.
It is well known that the class of rotation invariant algorithms are suboptimal even for learning sparse linear problems when the number of examples is below the "dimension" of the problem. This class includes any gradient descent trained neural net with a fully-connected input layer (initialized with a rotationally symmetric distribution). The simplest sparse problem is learning a single feature out of $d$ features. In that case the classification error or regression loss grows with $1-k/n$ where $k$ is the number of examples seen. These lower bounds become vacuous when the number of examples $k$ reaches the dimension $d$. We show that when noise is added to this sparse linear problem, rotation invariant algorithms are still suboptimal after seeing $d$ or more examples. We prove this via a lower bound for the Bayes optimal algorithm on a rotationally symmetrized problem. We then prove much lower upper bounds on the same problem for simple non-rotation invariant algorithms. Finally we analyze the gradient flow trajectories of many standard optimization algorithms in some simple cases and show how they veer toward or away from the sparse targets. We believe that our trajectory categorization will be useful in designing algorithms that can exploit sparse targets and our method for proving lower bounds will be crucial for analyzing other families of algorithms that admit different classes of invariances.
The consistency of the maximum likelihood estimator for mixtures of elliptically-symmetric distributions for estimating its population version is shown, where the underlying distribution $P$ is nonparametric and does not necessarily belong to the class of mixtures on which the estimator is based. In a situation where $P$ is a mixture of well enough separated but nonparametric distributions it is shown that the components of the population version of the estimator correspond to the well separated components of $P$. This provides some theoretical justification for the use of such estimators for cluster analysis in case that $P$ has well separated subpopulations even if these subpopulations differ from what the mixture model assumes.
Classical tests are available for the two-sample test of correspondence of distribution functions. From these, the Kolmogorov-Smirnov test provides also the graphical interpretation of the test results, in different forms. Here, we propose modifications of the Kolmogorov-Smirnov test with higher power. The proposed tests are based on the so-called global envelope test which allows for graphical interpretation, similarly as the Kolmogorov-Smirnov test. The tests are based on rank statistics and are suitable also for the comparison of $n$ samples, with $n \geq 2$. We compare the alternatives for the two-sample case through an extensive simulation study and discuss their interpretation. Finally, we apply the tests to real data. Specifically, we compare the height distributions between boys and girls at different ages, as well as sepal length distributions of different flower species using the proposed methodologies.
We address a prime counting problem across the homology classes of a graph, presenting a graph-theoretical Dirichlet-type analogue of the prime number theorem. The main machinery we have developed and employed is a spectral antisymmetry theorem, revealing that the spectra of the twisted graph adjacency matrices have an antisymmetric distribution over the character group of the graph. Additionally, we derive some trace formulas based on the twisted adjacency matrices as part of our analysis.
The main respiratory muscle, the diaphragm, is an example of a thin structure. We aim to perform detailed numerical simulations of the muscle mechanics based on individual patient data. This requires a representation of the diaphragm geometry extracted from medical image data. We design an adaptive reconstruction method based on a least-squares radial basis function partition of unity method. The method is adapted to thin structures by subdividing the structure rather than the surrounding space, and by introducing an anisotropic scaling of local subproblems. The resulting representation is an infinitely smooth level set function, which is stabilized such that there are no spurious zero level sets. We show reconstruction results for 2D cross sections of the diaphragm geometry as well as for the full 3D geometry. We also show solutions to basic PDE test problems in the reconstructed geometries.
This paper presents a method for thematic agreement assessment of geospatial data products of different semantics and spatial granularities, which may be affected by spatial offsets between test and reference data. The proposed method uses a multi-scale framework allowing for a probabilistic evaluation whether thematic disagreement between datasets is induced by spatial offsets due to different nature of the datasets or not. We test our method using real-estate derived settlement locations and remote-sensing derived building footprint data.