Classical tests are available for the two-sample test of correspondence of distribution functions. From these, the Kolmogorov-Smirnov test provides also the graphical interpretation of the test results, in different forms. Here, we propose modifications of the Kolmogorov-Smirnov test with higher power. The proposed tests are based on the so-called global envelope test which allows for graphical interpretation, similarly as the Kolmogorov-Smirnov test. The tests are based on rank statistics and are suitable also for the comparison of $n$ samples, with $n \geq 2$. We compare the alternatives for the two-sample case through an extensive simulation study and discuss their interpretation. Finally, we apply the tests to real data. Specifically, we compare the height distributions between boys and girls at different ages, as well as sepal length distributions of different flower species using the proposed methodologies.
The problem of binary hypothesis testing between two probability measures is considered. New sharp bounds are derived for the best achievable error probability of such tests based on independent and identically distributed observations. Specifically, the asymmetric version of the problem is examined, where different requirements are placed on the two error probabilities. Accurate nonasymptotic expansions with explicit constants are obtained for the error probability, using tools from large deviations and Gaussian approximation. Examples are shown indicating that, in the asymmetric regime, the approximations suggested by the new bounds are significantly more accurate than the approximations provided by either of the two main earlier approaches -- normal approximation and error exponents.
In this short note, explicit formulas are developed for the central and noncentral moments of the multivariate hypergeometric distribution. A numerical implementation is provided in Mathematica for fast evaluations. This work complements the paper by Ouimet (2021), where analogous formulas were derived and implemented in Mathematica for the multinomial distribution.
Analyses of voting algorithms often overlook informational externalities shaping individual votes. For example, pre-polling information often skews voters towards candidates who may not be their top choice, but who they believe would be a worthwhile recipient of their vote. In this work, we aim to understand the role of external information in voting outcomes. We study this by analyzing (1) the probability that voting outcomes align with external information, and (2) the effect of external information on the total utility across voters, or social welfare. In practice, voting mechanisms elicit coarse information about voter utilities, such as ordinal preferences, which initially prevents us from directly analyzing the effect of informational externalities with standard voting mechanisms. To overcome this, we present an intermediary mechanism for learning how preferences change with external information which does not require eliciting full cardinal preferences. With this tool in hand, we find that voting mechanisms are generally more likely to select the alternative most favored by the external information, and when external information reflects the population's true preferences, social welfare increases in expectation.
We propose a multivariate extension of the Lorenz curve based on multivariate rearrangements of optimal transport theory. We define a vector Lorenz map as the integral of the vector quantile map associated with a multivariate resource allocation. Each component of the Lorenz map is the cumulative share of each resource, as in the traditional univariate case. The pointwise ordering of such Lorenz maps defines a new multivariate majorization order, which is equivalent to preference by any social planner with inequality averse multivariate rank dependent social evaluation functional. We define a family of multi-attribute Gini index and complete ordering based on the Lorenz map. We propose the level sets of an Inverse Lorenz Function as a practical tool to visualize and compare inequality in two dimensions, and apply it to income-wealth inequality in the United States between 1989 and 2022.
We introduce a high-dimensional cubical complex, for any dimension t>0, and apply it to the design of quantum locally testable codes. Our complex is a natural generalization of the constructions by Panteleev and Kalachev and by Dinur et. al of a square complex (case t=2), which have been applied to the design of classical locally testable codes (LTC) and quantum low-density parity check codes (qLDPC) respectively. We turn the geometric (cubical) complex into a chain complex by relying on constant-sized local codes $h_1,\ldots,h_t$ as gadgets. A recent result of Panteleev and Kalachev on existence of tuples of codes that are product expanding enables us to prove lower bounds on the cycle and co-cycle expansion of our chain complex. For t=4 our construction gives a new family of "almost-good" quantum LTCs -- with constant relative rate, inverse-polylogarithmic relative distance and soundness, and constant-size parity checks. Both the distance of the quantum code and its local testability are proven directly from the cycle and co-cycle expansion of our chain complex.
Exploiting the explicit bijection between the density of singular values and the density of eigenvalues for bi-unitarily invariant complex random matrix ensembles of finite matrix size we aim at finding the induced probability measure on $j$ eigenvalues and $k$ singular values that we coin $j,k$-point correlation measure. We fully derive all $j,k$-point correlation measures in the simplest cases for matrices of size $n=1$ and $n=2$. For $n>2$, we find a general formula for the $1,1$-point correlation measure. This formula reduces drastically when assuming the singular values are drawn from a polynomial ensemble, yielding an explicit formula in terms of the kernel corresponding to the singular value statistics. These expressions simplify even further when the singular values are drawn from a P\'{o}lya ensemble and extend known results between the eigenvalue and singular value statistics of the corresponding bi-unitarily invariant ensemble.
ML-augmented algorithms utilize predictions to achieve performance beyond their worst-case bounds. Producing these predictions might be a costly operation -- this motivated Im et al. '22 to introduce the study of algorithms which use predictions parsimoniously. We design parsimonious algorithms for caching and MTS with action predictions, proposed by Antoniadis et al. '20, focusing on the parameters of consistency (performance with perfect predictions) and smoothness (dependence of their performance on the prediction error). Our algorithm for caching is 1-consistent, robust, and its smoothness deteriorates with the decreasing number of available predictions. We propose an algorithm for general MTS whose consistency and smoothness both scale linearly with the decreasing number of predictions. Without the restriction on the number of available predictions, both algorithms match the earlier guarantees achieved by Antoniadis et al. '20.
The high volatility of renewable energies calls for more energy efficiency. Thus, different physical systems need to be coupled efficiently although they run on various time scales. Here, the port-Hamiltonian (pH) modeling framework comes into play as it has several advantages, e.g., physical properties are encoded in the system structure and systems running on different time scales can be coupled easily. Additionally, pH systems coupled by energy-preserving conditions are still pH. Furthermore, in the energy transition hydrogen becomes an important player and unlike in natural gas, its temperature-dependence is of importance. Thus, we introduce an infinite dimensional pH formulation of the compressible non-isothermal Euler equations to model flow with temperature-dependence. We set up the underlying Stokes-Dirac structure and deduce the boundary port variables. We introduce coupling conditions into our pH formulation, such that the whole network system is pH itself. This is achieved by using energy-preserving coupling conditions, i.e., mass conservation and equality of total enthalpy, at the coupling nodes. Furthermore, to close the system a third coupling condition is needed. Here, equality of the outgoing entropy at coupling nodes is used and included into our systems in a structure-preserving way. Following that, we adapt the structure-preserving aproximation methods from the isothermal to the non-isothermal case. Academic numerical examples will support our analytical findings.
This work presents a comparative review and classification between some well-known thermodynamically consistent models of hydrogel behavior in a large deformation setting, specifically focusing on solvent absorption/desorption and its impact on mechanical deformation and network swelling. The proposed discussion addresses formulation aspects, general mathematical classification of the governing equations, and numerical implementation issues based on the finite element method. The theories are presented in a unified framework demonstrating that, despite not being evident in some cases, all of them follow equivalent thermodynamic arguments. A detailed numerical analysis is carried out where Taylor-Hood elements are employed in the spatial discretization to satisfy the inf-sup condition and to prevent spurious numerical oscillations. The resulting discrete problems are solved using the FEniCS platform through consistent variational formulations, employing both monolithic and staggered approaches. We conduct benchmark tests on various hydrogel structures, demonstrating that major differences arise from the chosen volumetric response of the hydrogel. The significance of this choice is frequently underestimated in the state-of-the-art literature but has been shown to have substantial implications on the resulting hydrogel behavior.
We extend three related results from the analysis of influences of Boolean functions to the quantum setting, namely the KKL Theorem, Friedgut's Junta Theorem and Talagrand's variance inequality for geometric influences. Our results are derived by a joint use of recently studied hypercontractivity and gradient estimates. These generic tools also allow us to derive generalizations of these results in a general von Neumann algebraic setting beyond the case of the quantum hypercube, including examples in infinite dimensions relevant to quantum information theory such as continuous variables quantum systems. Finally, we comment on the implications of our results as regards to noncommutative extensions of isoperimetric type inequalities, quantum circuit complexity lower bounds and the learnability of quantum observables.