亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of binary hypothesis testing between two probability measures is considered. New sharp bounds are derived for the best achievable error probability of such tests based on independent and identically distributed observations. Specifically, the asymmetric version of the problem is examined, where different requirements are placed on the two error probabilities. Accurate nonasymptotic expansions with explicit constants are obtained for the error probability, using tools from large deviations and Gaussian approximation. Examples are shown indicating that, in the asymmetric regime, the approximations suggested by the new bounds are significantly more accurate than the approximations provided by either of the two main earlier approaches -- normal approximation and error exponents.

相關內容

We propose a coefficient that measures dependence in paired samples of functions. It has properties similar to the Pearson correlation, but differs in significant ways: 1) it is designed to measure dependence between curves, 2) it focuses only on extreme curves. The new coefficient is derived within the framework of regular variation in Banach spaces. A consistent estimator is proposed and justified by an asymptotic analysis and a simulation study. The usefulness of the new coefficient is illustrated on financial and and climate functional data.

Delamination is a critical mode of failure that occurs between plies in a composite laminate. The cohesive element, developed based on the cohesive zone model, is widely used for modeling delamination. However, standard cohesive elements suffer from a well-known limit on the mesh density-the element size must be much smaller than the cohesive zone size. This work develops a new set of elements for modelling composite plies and their interfaces in 3D. A triangular Kirchhoff-Love shell element is developed for orthotropic materials to model the plies. A structural cohesive element, conforming to the shell elements of the plies, is developed to model the interface delamination. The proposed method is verified and validated on the classical benchmark problems of Mode I, Mode II, and mixed-mode delamination of unidirectional laminates, as well as on the single-leg bending problem of a multi-directional laminate. All the results show that the element size in the proposed models can be ten times larger than that in the standard cohesive element models, with more than 90% reduction in CPU time, while retaining prediction accuracy. This would then allow more effective and efficient modeling of delamination in composites without worrying about the cohesive zone limit on the mesh density.

Continuous p-dispersion problems with and without boundary constraints are NP-hard optimization problems with numerous real-world applications, notably in facility location and circle packing, which are widely studied in mathematics and operations research. In this work, we concentrate on general cases with a non-convex multiply-connected region that are rarely studied in the literature due to their intractability and the absence of an efficient optimization model. Using the penalty function approach, we design a unified and almost everywhere differentiable optimization model for these complex problems and propose a tabu search-based global optimization (TSGO) algorithm for solving them. Computational results over a variety of benchmark instances show that the proposed model works very well, allowing popular local optimization methods (e.g., the quasi-Newton methods and the conjugate gradient methods) to reach high-precision solutions due to the differentiability of the model. These results further demonstrate that the proposed TSGO algorithm is very efficient and significantly outperforms several popular global optimization algorithms in the literature, improving the best-known solutions for several existing instances in a short computational time. Experimental analyses are conducted to show the influence of several key ingredients of the algorithm on computational performance.

Detecting differences in gene expression is an important part of single-cell RNA sequencing experiments, and many statistical methods have been developed for this aim. Most differential expression analyses focus on comparing expression between two groups (e.g., treatment vs. control). But there is increasing interest in multi-condition differential expression analyses in which expression is measured in many conditions, and the aim is to accurately detect and estimate expression differences in all conditions. We show that directly modeling single-cell RNA-seq counts in all conditions simultaneously, while also inferring how expression differences are shared across conditions, leads to greatly improved performance for detecting and estimating expression differences compared to existing methods. We illustrate the potential of this new approach by analyzing data from a single-cell experiment studying the effects of cytokine stimulation on gene expression. We call our new method "Poisson multivariate adaptive shrinkage", and it is implemented in an R package available online at //github.com/stephenslab/poisson.mash.alpha.

The multidimensional knapsack problem (MKP) is an NP-hard combinatorial optimization problem whose solution is determining a subset of maximum total profit items that do not violate capacity constraints. Due to its hardness, large-scale MKP instances are usually a target for metaheuristics, a context in which effective feasibility maintenance strategies are crucial. In 1998, Chu and Beasley proposed an effective heuristic repair that is still relevant for recent metaheuristics. However, due to its deterministic nature, the diversity of solutions such heuristic provides is insufficient for long runs. As a result, the search for new solutions ceases after a while. This paper proposes an efficiency-based randomization strategy for the heuristic repair that increases the variability of the repaired solutions without deteriorating quality and improves the overall results.

Inference for functional linear models in the presence of heteroscedastic errors has received insufficient attention given its practical importance; in fact, even a central limit theorem has not been studied in this case. At issue, conditional mean estimates have complicated sampling distributions due to the infinite dimensional regressors, where truncation bias and scaling issues are compounded by non-constant variance under heteroscedasticity. As a foundation for distributional inference, we establish a central limit theorem for the estimated conditional mean under general dependent errors, and subsequently we develop a paired bootstrap method to provide better approximations of sampling distributions. The proposed paired bootstrap does not follow the standard bootstrap algorithm for finite dimensional regressors, as this version fails outside of a narrow window for implementation with functional regressors. The reason owes to a bias with functional regressors in a naive bootstrap construction. Our bootstrap proposal incorporates debiasing and thereby attains much broader validity and flexibility with truncation parameters for inference under heteroscedasticity; even when the naive approach may be valid, the proposed bootstrap method performs better numerically. The bootstrap is applied to construct confidence intervals for centered projections and for conducting hypothesis tests for the multiple conditional means. Our theoretical results on bootstrap consistency are demonstrated through simulation studies and also illustrated with a real data example.

Latent variable models serve as powerful tools to infer underlying dynamics from observed neural activity. However, due to the absence of ground truth data, prediction benchmarks are often employed as proxies. In this study, we reveal the limitations of the widely-used 'co-smoothing' prediction framework and propose an improved few-shot prediction approach that encourages more accurate latent dynamics. Utilizing a student-teacher setup with Hidden Markov Models, we demonstrate that the high co-smoothing model space can encompass models with arbitrary extraneous dynamics within their latent representations. To address this, we introduce a secondary metric -- a few-shot version of co-smoothing. This involves performing regression from the latent variables to held-out channels in the data using fewer trials. Our results indicate that among models with near-optimal co-smoothing, those with extraneous dynamics underperform in the few-shot co-smoothing compared to 'minimal' models devoid of such dynamics. We also provide analytical insights into the origin of this phenomenon. We further validate our findings on real neural data using two state-of-the-art methods: LFADS and STNDT. In the absence of ground truth, we suggest a proxy measure to quantify extraneous dynamics. By cross-decoding the latent variables of all model pairs with high co-smoothing, we identify models with minimal extraneous dynamics. We find a correlation between few-shot co-smoothing performance and this new measure. In summary, we present a novel prediction metric designed to yield latent variables that more accurately reflect the ground truth, offering a significant improvement for latent dynamics inference.

This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.

This paper presents GMASK, a general algorithm for distributed approximate similarity search that accepts any arbitrary distance function. GMASK requires a clustering algorithm that induces Voronoi regions in a dataset and returns a representative element for each region. Then, it creates a multilevel indexing structure suitable for large datasets with high dimensionality and sparsity, usually stored in distributed systems. Many similarity search algorithms rely on $k$-means, typically associated with the Euclidean distance, which is inappropriate for specific problems. Instead, in this work we implement GMASK using $k$-medoids to make it compatible with any distance and a wider range of problems. Experimental results verify the applicability of this method with real datasets, improving the performance of alternative algorithms for approximate similarity search. In addition, results confirm existing intuitions regarding the advantages of using certain instances of the Minkowski distance in high-dimensional datasets.

Multivariate probabilistic verification is concerned with the evaluation of joint probability distributions of vector quantities such as a weather variable at multiple locations or a wind vector for instance. The logarithmic score is a proper score that is useful in this context. In order to apply this score to ensemble forecasts, a choice for the density is required. Here, we are interested in the specific case when the density is multivariate normal with mean and covariance given by the ensemble mean and ensemble covariance, respectively. Under the assumptions of multivariate normality and exchangeability of the ensemble members, a relationship is derived which describes how the logarithmic score depends on ensemble size. It permits to estimate the score in the limit of infinite ensemble size from a small ensemble and thus produces a fair logarithmic score for multivariate ensemble forecasts under the assumption of normality. This generalises a study from 2018 which derived the ensemble size adjustment of the logarithmic score in the univariate case. An application to medium-range forecasts examines the usefulness of the ensemble size adjustments when multivariate normality is only an approximation. Predictions of vectors consisting of several different combinations of upper air variables are considered. Logarithmic scores are calculated for these vectors using ECMWF's daily extended-range forecasts which consist of a 100-member ensemble. The probabilistic forecasts of these vectors are verified against operational ECMWF analyses in the Northern mid-latitudes in autumn 2023. Scores are computed for ensemble sizes from 8 to 100. The fair logarithmic scores of ensembles with different cardinalities are very close, in contrast to the unadjusted scores which decrease considerably with ensemble size. This provides evidence for the practical usefulness of the derived relationships.

北京阿比特科技有限公司