Exploiting the explicit bijection between the density of singular values and the density of eigenvalues for bi-unitarily invariant complex random matrix ensembles of finite matrix size we aim at finding the induced probability measure on $j$ eigenvalues and $k$ singular values that we coin $j,k$-point correlation measure. We fully derive all $j,k$-point correlation measures in the simplest cases for matrices of size $n=1$ and $n=2$. For $n>2$, we find a general formula for the $1,1$-point correlation measure. This formula reduces drastically when assuming the singular values are drawn from a polynomial ensemble, yielding an explicit formula in terms of the kernel corresponding to the singular value statistics. These expressions simplify even further when the singular values are drawn from a P\'{o}lya ensemble and extend known results between the eigenvalue and singular value statistics of the corresponding bi-unitarily invariant ensemble.
We present a novel method for training score-based generative models which uses nonlinear noising dynamics to improve learning of structured distributions. Generalizing to a nonlinear drift allows for additional structure to be incorporated into the dynamics, thus making the training better adapted to the data, e.g., in the case of multimodality or (approximate) symmetries. Such structure can be obtained from the data by an inexpensive preprocessing step. The nonlinear dynamics introduces new challenges into training which we address in two ways: 1) we develop a new nonlinear denoising score matching (NDSM) method, 2) we introduce neural control variates in order to reduce the variance of the NDSM training objective. We demonstrate the effectiveness of this method on several examples: a) a collection of low-dimensional examples, motivated by clustering in latent space, b) high-dimensional images, addressing issues with mode collapse, small training sets, and approximate symmetries, the latter being a challenge for methods based on equivariant neural networks, which require exact symmetries.
Multi-index models -- functions which only depend on the covariates through a non-linear transformation of their projection on a subspace -- are a useful benchmark for investigating feature learning with neural networks. This paper examines the theoretical boundaries of learnability in this hypothesis class, focusing particularly on the minimum sample complexity required for weakly recovering their low-dimensional structure with first-order iterative algorithms, in the high-dimensional regime where the number of samples is $n=\alpha d$ is proportional to the covariate dimension $d$. Our findings unfold in three parts: (i) first, we identify under which conditions a \textit{trivial subspace} can be learned with a single step of a first-order algorithm for any $\alpha\!>\!0$; (ii) second, in the case where the trivial subspace is empty, we provide necessary and sufficient conditions for the existence of an {\it easy subspace} consisting of directions that can be learned only above a certain sample complexity $\alpha\!>\!\alpha_c$. The critical threshold $\alpha_{c}$ marks the presence of a computational phase transition, in the sense that no efficient iterative algorithm can succeed for $\alpha\!<\!\alpha_c$. In a limited but interesting set of really hard directions -- akin to the parity problem -- $\alpha_c$ is found to diverge. Finally, (iii) we demonstrate that interactions between different directions can result in an intricate hierarchical learning phenomenon, where some directions can be learned sequentially when coupled to easier ones. Our analytical approach is built on the optimality of approximate message-passing algorithms among first-order iterative methods, delineating the fundamental learnability limit across a broad spectrum of algorithms, including neural networks trained with gradient descent.
Approximating invariant subspaces of generalized eigenvalue problems (GEPs) is a fundamental computational problem at the core of machine learning and scientific computing. It is, for example, the root of Principal Component Analysis (PCA) for dimensionality reduction, data visualization, and noise filtering, and of Density Functional Theory (DFT), arguably the most popular method to calculate the electronic structure of materials. For a Hermitian definite GEP $HC=SC\Lambda$, let $\Pi_k$ be the true spectral projector on the invariant subspace that is associated with the $k$ smallest (or largest) eigenvalues. Given $H,$ $S$, an integer $k$, and accuracy $\varepsilon\in(0,1)$, we show that we can compute a matrix $\widetilde\Pi_k$ such that $\lVert\Pi_k-\widetilde\Pi_k\rVert_2\leq \varepsilon$, in $O\left( n^{\omega+\eta}\mathrm{polylog}(n,\varepsilon^{-1},\kappa(S),\mathrm{gap}_k^{-1}) \right)$ bit operations in the floating point model with probability $1-1/n$. Here, $\eta>0$ is arbitrarily small, $\omega\lesssim 2.372$ is the matrix multiplication exponent, $\kappa(S)=\lVert S\rVert_2\lVert S^{-1}\rVert_2$, and $\mathrm{gap}_k$ is the gap between eigenvalues $k$ and $k+1$. To the best of our knowledge, this is the first end-to-end analysis achieving such "forward-error" approximation guarantees with nearly $O(n^{\omega+\eta})$ bit complexity, improving classical $\widetilde O(n^3)$ eigensolvers, even for the regular case $(S=I)$. Our methods rely on a new $O(n^{\omega+\eta})$ stability analysis for the Cholesky factorization, and a new smoothed analysis for computing spectral gaps, which can be of independent interest. Ultimately, we obtain new matrix multiplication-type bit complexity upper bounds for PCA problems, including classical PCA and (randomized) low-rank approximation.
Inference for functional linear models in the presence of heteroscedastic errors has received insufficient attention given its practical importance; in fact, even a central limit theorem has not been studied in this case. At issue, conditional mean estimates have complicated sampling distributions due to the infinite dimensional regressors, where truncation bias and scaling issues are compounded by non-constant variance under heteroscedasticity. As a foundation for distributional inference, we establish a central limit theorem for the estimated conditional mean under general dependent errors, and subsequently we develop a paired bootstrap method to provide better approximations of sampling distributions. The proposed paired bootstrap does not follow the standard bootstrap algorithm for finite dimensional regressors, as this version fails outside of a narrow window for implementation with functional regressors. The reason owes to a bias with functional regressors in a naive bootstrap construction. Our bootstrap proposal incorporates debiasing and thereby attains much broader validity and flexibility with truncation parameters for inference under heteroscedasticity; even when the naive approach may be valid, the proposed bootstrap method performs better numerically. The bootstrap is applied to construct confidence intervals for centered projections and for conducting hypothesis tests for the multiple conditional means. Our theoretical results on bootstrap consistency are demonstrated through simulation studies and also illustrated with a real data example.
We develop further the theory of monoidal bicategories by introducing and studying bicategorical counterparts of the notions of a linear explonential comonad, as considered in the study of linear logic, and of a codereliction transformation, introduced to study differential linear logic via differential categories. As an application, we extend the differential calculus of Joyal's analytic functors to analytic functors between presheaf categories, just as ordinary calculus extends from a single variable to many variables.
This work proposes a novel variational approximation of partial differential equations on moving geometries determined by explicit boundary representations. The benefits of the proposed formulation are the ability to handle large displacements of explicitly represented domain boundaries without generating body-fitted meshes and remeshing techniques. For the space discretization, we use a background mesh and an unfitted method that relies on integration on cut cells only. We perform this intersection by using clipping algorithms. To deal with the mesh movement, we pullback the equations to a reference configuration (the spatial mesh at the initial time slab times the time interval) that is constant in time. This way, the geometrical intersection algorithm is only required in 3D, another key property of the proposed scheme. At the end of the time slab, we compute the deformed mesh, intersect the deformed boundary with the background mesh, and consider an exact transfer operator between meshes to compute jump terms in the time discontinuous Galerkin integration. The transfer is also computed using geometrical intersection algorithms. We demonstrate the applicability of the method to fluid problems around rotating (2D and 3D) geometries described by oriented boundary meshes. We also provide a set of numerical experiments that show the optimal convergence of the method.
An expression is any mathematical formula that contains certain formal variables and operations to be executed in a specified order. In computer science, it is usually convenient to represent each expression in the form of an expression tree. Here, we consider only arithmetic expressions, i.e., those that contain only the four standard arithmetic operations: addition, subtraction, multiplication and division, alongside additive inversion. We first provide certain theoretical results concerning the equivalence of such expressions and then disclose a $\Theta(n^2)$ algorithm that computes the number of inequivalent arithmetic expressions on $n$ distinct variables.
Multivariate probabilistic verification is concerned with the evaluation of joint probability distributions of vector quantities such as a weather variable at multiple locations or a wind vector for instance. The logarithmic score is a proper score that is useful in this context. In order to apply this score to ensemble forecasts, a choice for the density is required. Here, we are interested in the specific case when the density is multivariate normal with mean and covariance given by the ensemble mean and ensemble covariance, respectively. Under the assumptions of multivariate normality and exchangeability of the ensemble members, a relationship is derived which describes how the logarithmic score depends on ensemble size. It permits to estimate the score in the limit of infinite ensemble size from a small ensemble and thus produces a fair logarithmic score for multivariate ensemble forecasts under the assumption of normality. This generalises a study from 2018 which derived the ensemble size adjustment of the logarithmic score in the univariate case. An application to medium-range forecasts examines the usefulness of the ensemble size adjustments when multivariate normality is only an approximation. Predictions of vectors consisting of several different combinations of upper air variables are considered. Logarithmic scores are calculated for these vectors using ECMWF's daily extended-range forecasts which consist of a 100-member ensemble. The probabilistic forecasts of these vectors are verified against operational ECMWF analyses in the Northern mid-latitudes in autumn 2023. Scores are computed for ensemble sizes from 8 to 100. The fair logarithmic scores of ensembles with different cardinalities are very close, in contrast to the unadjusted scores which decrease considerably with ensemble size. This provides evidence for the practical usefulness of the derived relationships.
The Fisher-Rao distance between two probability distributions of a statistical model is defined as the Riemannian geodesic distance induced by the Fisher information metric. In order to calculate the Fisher-Rao distance in closed-form, we need (1) to elicit a formula for the Fisher-Rao geodesics, and (2) to integrate the Fisher length element along those geodesics. We consider several numerically robust approximation and bounding techniques for the Fisher-Rao distances: First, we report generic upper bounds on Fisher-Rao distances based on closed-form 1D Fisher-Rao distances of submodels. Second, we describe several generic approximation schemes depending on whether the Fisher-Rao geodesics or pregeodesics are available in closed-form or not. In particular, we obtain a generic method to guarantee an arbitrarily small additive error on the approximation provided that Fisher-Rao pregeodesics and tight lower and upper bounds are available. Third, we consider the case of Fisher metrics being Hessian metrics, and report generic tight upper bounds on the Fisher-Rao distances using techniques of information geometry. Uniparametric and biparametric statistical models always have Fisher Hessian metrics, and in general a simple test allows to check whether the Fisher information matrix yields a Hessian metric or not. Fourth, we consider elliptical distribution families and show how to apply the above techniques to these models. We also propose two new distances based either on the Fisher-Rao lengths of curves serving as proxies of Fisher-Rao geodesics, or based on the Birkhoff/Hilbert projective cone distance. Last, we consider an alternative group-theoretic approach for statistical transformation models based on the notion of maximal invariant which yields insights on the structures of the Fisher-Rao distance formula which may be used fruitfully in applications.
Similar to the notion of h-adaptivity, where the discretization resolution is adaptively changed, I propose the notion of model adaptivity, where the underlying model (the governing equations) is adaptively changed in space and time. Specifically, this work introduces a hybrid and adaptive coupling of a 3D bulk fluid flow model with a 2D thin film flow model. As a result, this work extends the applicability of existing thin film flow models to complex scenarios where, for example, bulk flow develops into thin films after striking a surface. At each location in space and time, the proposed framework automatically decides whether a 3D model or a 2D model must be applied. Using a meshless approach for both 3D and 2D models, at each particle, the decision to apply a 2D or 3D model is based on the user-prescribed resolution and a local principal component analysis. When a particle needs to be changed from a 3D model to 2D, or vice versa, the discretization is changed, and all relevant data mapping is done on-the-fly. Appropriate two-way coupling conditions and mass conservation considerations between the 3D and 2D models are also developed. Numerical results show that this model adaptive framework shows higher flexibility and compares well against finely resolved 3D simulations. In an actual application scenario, a 3 factor speed up is obtained, while maintaining the accuracy of the solution.