亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose an assertion-based approach to capture software evolution, through the notion of commit-relevant specification. A commit-relevant specification summarises the program properties that have changed as a consequence of a commit (understood as a specific software modification), via two sets of assertions, the delta-added assertions, properties that did not hold in the pre-commit version but hold on the post-commit, and the delta-removed assertions, those that were valid in the pre-commit, but no longer hold after the code change. We also present DeltaSpec, an approach that combines test generation and dynamic specification inference to automatically compute commit-relevant specifications from given commits. We evaluate DeltaSpec on two datasets that include a total of 57 commits (63 classes and 797 methods). We show that commit-relevant assertions can precisely describe the semantic deltas of code changes, providing a useful mechanism for validating the behavioural evolution of software. We also show that DeltaSpec can infer 88% of the manually written commit-relevant assertions expressible in the language supported by the tool. Moreover, our experiments demonstrate that DeltaSpec's inferred assertions are effective to detect regression faults. More precisely, we show that commit-relevant assertions can detect, on average, 78.3% of the artificially seeded faults that interact with the code changes. We also show that assertions in the delta are 58.3% more effective in detecting commit-relevant mutants than assertions outside the delta, and that it takes on average 169% fewer assertions when these are commit-relevant, compared to using general valid assertions, to achieve a same commit-relevant mutation score.

相關內容

Recently, causal inference has attracted increasing attention from researchers of recommender systems (RS), which analyzes the relationship between a cause and its effect and has a wide range of real-world applications in multiple fields. Causal inference can model the causality in recommender systems like confounding effects and deal with counterfactual problems such as offline policy evaluation and data augmentation. Although there are already some valuable surveys on causal recommendations, these surveys introduce approaches in a relatively isolated way and lack theoretical analysis of existing methods. Due to the unfamiliarity with causality to RS researchers, it is both necessary and challenging to comprehensively review the relevant studies from the perspective of causal theory, which might be instructive for the readers to propose new approaches in practice. This survey attempts to provide a systematic review of up-to-date papers in this area from a theoretical standpoint. Firstly, we introduce the fundamental concepts of causal inference as the basis of the following review. Then we propose a new taxonomy from the perspective of causal techniques and further discuss technical details about how existing methods apply causal inference to address specific recommender issues. Finally, we highlight some promising directions for future research in this field.

To make robots accessible to a broad audience, it is critical to endow them with the ability to take universal modes of communication, like commands given in natural language, and extract a concrete desired task specification, defined using a formal language like linear temporal logic (LTL). In this paper, we present a learning-based approach for translating from natural language commands to LTL specifications with very limited human-labeled training data. This is in stark contrast to existing natural-language to LTL translators, which require large human-labeled datasets, often in the form of labeled pairs of LTL formulas and natural language commands, to train the translator. To reduce reliance on human data, our approach generates a large synthetic training dataset through algorithmic generation of LTL formulas, conversion to structured English, and then exploiting the paraphrasing capabilities of modern large language models (LLMs) to synthesize a diverse corpus of natural language commands corresponding to the LTL formulas. We use this generated data to finetune an LLM and apply a constrained decoding procedure at inference time to ensure the returned LTL formula is syntactically correct. We evaluate our approach on three existing LTL/natural language datasets and show that we can translate natural language commands at 75\% accuracy with far less human data ($\le$12 annotations). Moreover, when training on large human-annotated datasets, our method achieves higher test accuracy (95\% on average) than prior work. Finally, we show the translated formulas can be used to plan long-horizon, multi-stage tasks on a 12D quadrotor.

With the fast improvement of machine learning, reinforcement learning (RL) has been used to automate human tasks in different areas. However, training such agents is difficult and restricted to expert users. Moreover, it is mostly limited to simulation environments due to the high cost and safety concerns of interactions in the real world. Demonstration Learning is a paradigm in which an agent learns to perform a task by imitating the behavior of an expert shown in demonstrations. It is a relatively recent area in machine learning, but it is gaining significant traction due to having tremendous potential for learning complex behaviors from demonstrations. Learning from demonstration accelerates the learning process by improving sample efficiency, while also reducing the effort of the programmer. Due to learning without interacting with the environment, demonstration learning would allow the automation of a wide range of real world applications such as robotics and healthcare. This paper provides a survey of demonstration learning, where we formally introduce the demonstration problem along with its main challenges and provide a comprehensive overview of the process of learning from demonstrations from the creation of the demonstration data set, to learning methods from demonstrations, and optimization by combining demonstration learning with different machine learning methods. We also review the existing benchmarks and identify their strengths and limitations. Additionally, we discuss the advantages and disadvantages of the paradigm as well as its main applications. Lastly, we discuss our perspective on open problems and research directions for this rapidly growing field.

This paper proposes a methodology for discovering meaningful properties in data by exploring the latent space of unsupervised deep generative models. We combine manipulation of individual latent variables to extreme values outside the training range with methods inspired by causal inference into an approach we call causal disentanglement with extreme values (CDEV) and show that this approach yields insights for model interpretability. Using this technique, we can infer what properties of unknown data the model encodes as meaningful. We apply the methodology to test what is meaningful in the communication system of sperm whales, one of the most intriguing and understudied animal communication systems. We train a network that has been shown to learn meaningful representations of speech and test whether we can leverage such unsupervised learning to decipher the properties of another vocal communication system for which we have no ground truth. The proposed technique suggests that sperm whales encode information using the number of clicks in a sequence, the regularity of their timing, and audio properties such as the spectral mean and the acoustic regularity of the sequences. Some of these findings are consistent with existing hypotheses, while others are proposed for the first time. We also argue that our models uncover rules that govern the structure of communication units in the sperm whale communication system and apply them while generating innovative data not shown during training. This paper suggests that an interpretation of the outputs of deep neural networks with causal methodology can be a viable strategy for approaching data about which little is known and presents another case of how deep learning can limit the hypothesis space. Finally, the proposed approach combining latent space manipulation and causal inference can be extended to other architectures and arbitrary datasets.

With the development of recommender systems (RS), several promising systems have emerged, such as context-aware RS, multi-criteria RS, and group RS. However, the education domain may not benefit from these developments due to missing information, such as contexts and multiple criteria, in educational data sets. In this paper, we announce and release an open data set for educational recommender systems. This data set includes not only traditional rating entries, but also enriched information, e.g., contexts, user preferences in multiple criteria, group compositions and preferences, etc. It provides a testbed and enables more opportunities to develop and examine various educational recommender systems.

Temporal data, representing chronological observations of complex systems, has always been a typical data structure that can be widely generated by many domains, such as industry, medicine and finance. Analyzing this type of data is extremely valuable for various applications. Thus, different temporal data analysis tasks, eg, classification, clustering and prediction, have been proposed in the past decades. Among them, causal discovery, learning the causal relations from temporal data, is considered an interesting yet critical task and has attracted much research attention. Existing casual discovery works can be divided into two highly correlated categories according to whether the temporal data is calibrated, ie, multivariate time series casual discovery, and event sequence casual discovery. However, most previous surveys are only focused on the time series casual discovery and ignore the second category. In this paper, we specify the correlation between the two categories and provide a systematical overview of existing solutions. Furthermore, we provide public datasets, evaluation metrics and new perspectives for temporal data casual discovery.

Having reliable specifications is an unavoidable challenge in achieving verifiable correctness, robustness, and interpretability of AI systems. Existing specifications for neural networks are in the paradigm of data as specification. That is, the local neighborhood centering around a reference input is considered to be correct (or robust). While existing specifications contribute to verifying adversarial robustness, a significant problem in many research domains, our empirical study shows that those verified regions are somewhat tight, and thus fail to allow verification of test set inputs, making them impractical for some real-world applications. To this end, we propose a new family of specifications called neural representation as specification, which uses the intrinsic information of neural networks - neural activation patterns (NAPs), rather than input data to specify the correctness and/or robustness of neural network predictions. We present a simple statistical approach to mining neural activation patterns. To show the effectiveness of discovered NAPs, we formally verify several important properties, such as various types of misclassifications will never happen for a given NAP, and there is no ambiguity between different NAPs. We show that by using NAP, we can verify a significant region of the input space, while still recalling 84% of the data on MNIST. Moreover, we can push the verifiable bound to 10 times larger on the CIFAR10 benchmark. Thus, we argue that NAPs can potentially be used as a more reliable and extensible specification for neural network verification.

Existing recommender systems extract the user preference based on learning the correlation in data, such as behavioral correlation in collaborative filtering, feature-feature, or feature-behavior correlation in click-through rate prediction. However, regretfully, the real world is driven by causality rather than correlation, and correlation does not imply causation. For example, the recommender systems can recommend a battery charger to a user after buying a phone, in which the latter can serve as the cause of the former, and such a causal relation cannot be reversed. Recently, to address it, researchers in recommender systems have begun to utilize causal inference to extract causality, enhancing the recommender system. In this survey, we comprehensively review the literature on causal inference-based recommendation. At first, we present the fundamental concepts of both recommendation and causal inference as the basis of later content. We raise the typical issues that the non-causality recommendation is faced. Afterward, we comprehensively review the existing work of causal inference-based recommendation, based on a taxonomy of what kind of problem causal inference addresses. Last, we discuss the open problems in this important research area, along with interesting future works.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司