亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper proposes a methodology for discovering meaningful properties in data by exploring the latent space of unsupervised deep generative models. We combine manipulation of individual latent variables to extreme values outside the training range with methods inspired by causal inference into an approach we call causal disentanglement with extreme values (CDEV) and show that this approach yields insights for model interpretability. Using this technique, we can infer what properties of unknown data the model encodes as meaningful. We apply the methodology to test what is meaningful in the communication system of sperm whales, one of the most intriguing and understudied animal communication systems. We train a network that has been shown to learn meaningful representations of speech and test whether we can leverage such unsupervised learning to decipher the properties of another vocal communication system for which we have no ground truth. The proposed technique suggests that sperm whales encode information using the number of clicks in a sequence, the regularity of their timing, and audio properties such as the spectral mean and the acoustic regularity of the sequences. Some of these findings are consistent with existing hypotheses, while others are proposed for the first time. We also argue that our models uncover rules that govern the structure of communication units in the sperm whale communication system and apply them while generating innovative data not shown during training. This paper suggests that an interpretation of the outputs of deep neural networks with causal methodology can be a viable strategy for approaching data about which little is known and presents another case of how deep learning can limit the hypothesis space. Finally, the proposed approach combining latent space manipulation and causal inference can be extended to other architectures and arbitrary datasets.

相關內容

Dedicated model transformation languages are claimed to provide many benefits over the use of general purpose languages for developing model transformations. However, the actual advantages associated with the use of MTLs are poorly understood empirically. There is little knowledge and empirical assessment about what advantages and disadvantages hold and where they originate from. In a prior interview study, we elicited expert opinions on what advantages result from what factors and a number of factors that moderate the influence. We aim to quantitatively asses the interview results to confirm or reject the effects posed by different factors. We intend to gain insights into how valuable different factors are so that future studies can draw on these data for designing targeted and relevant studies. We gather data on the factors and quality attributes using an online survey. To analyse the data, we use universal structure modelling based on a structure model. We use significance values and path coefficients produced bz USM for each hypothesised interdependence to confirm or reject correlation and to weigh the strength of influence present. We analyzed 113 responses. The results show that the Tracing and Reuse Mechanisms are most important overall. Though the observed effects were generally 10 times lower than anticipated. Additionally, we found that a more nuanced view of moderation effects is warranted. Their moderating influence differed significantly between the different influences, with the strongest effects being 1000 times higher than the weakest. The empirical assessment of MTLs is a complex topic that cannot be solved by looking at a single stand-alone factor. Our results provide clear indication that evaluation should consider transformations of different sizes and use-cases. Language development should focus on providing transformation specific reuse mechanisms .

Multimodal sentiment analysis is an important area for understanding the user's internal states. Deep learning methods were effective, but the problem of poor interpretability has gradually gained attention. Previous works have attempted to use attention weights or vector distributions to provide interpretability. However, their explanations were not intuitive and can be influenced by different trained models. This study proposed a novel approach to provide interpretability by converting nonverbal modalities into text descriptions and by using large-scale language models for sentiment predictions. This provides an intuitive approach to directly interpret what models depend on with respect to making decisions from input texts, thus significantly improving interpretability. Specifically, we convert descriptions based on two feature patterns for the audio modality and discrete action units for the facial modality. Experimental results on two sentiment analysis tasks demonstrated that the proposed approach maintained, or even improved effectiveness for sentiment analysis compared to baselines using conventional features, with the highest improvement of 2.49% on the F1 score. The results also showed that multimodal descriptions have similar characteristics on fusing modalities as those of conventional fusion methods. The results demonstrated that the proposed approach is interpretable and effective for multimodal sentiment analysis.

Calibrating agent-based models (ABMs) in economics and finance typically involves a derivative-free search in a very large parameter space. In this work, we benchmark a number of search methods in the calibration of a well-known macroeconomic ABM on real data, and further assess the performance of "mixed strategies" made by combining different methods. We find that methods based on random-forest surrogates are particularly efficient, and that combining search methods generally increases performance since the biases of any single method are mitigated. Moving from these observations, we propose a reinforcement learning (RL) scheme to automatically select and combine search methods on-the-fly during a calibration run. The RL agent keeps exploiting a specific method only as long as this keeps performing well, but explores new strategies when the specific method reaches a performance plateau. The resulting RL search scheme outperforms any other method or method combination tested, and does not rely on any prior information or trial and error procedure.

Prediction-based decision-making systems are becoming increasingly prevalent in various domains. Previous studies have demonstrated that such systems are vulnerable to runaway feedback loops, e.g., when police are repeatedly sent back to the same neighborhoods regardless of the actual rate of criminal activity, which exacerbate existing biases. In practice, the automated decisions have dynamic feedback effects on the system itself that can perpetuate over time, making it difficult for short-sighted design choices to control the system's evolution. While researchers started proposing longer-term solutions to prevent adverse outcomes (such as bias towards certain groups), these interventions largely depend on ad hoc modeling assumptions and a rigorous theoretical understanding of the feedback dynamics in ML-based decision-making systems is currently missing. In this paper, we use the language of dynamical systems theory, a branch of applied mathematics that deals with the analysis of the interconnection of systems with dynamic behaviors, to rigorously classify the different types of feedback loops in the ML-based decision-making pipeline. By reviewing existing scholarly work, we show that this classification covers many examples discussed in the algorithmic fairness community, thereby providing a unifying and principled framework to study feedback loops. By qualitative analysis, and through a simulation example of recommender systems, we show which specific types of ML biases are affected by each type of feedback loop. We find that the existence of feedback loops in the ML-based decision-making pipeline can perpetuate, reinforce, or even reduce ML biases.

Federated Learning (FL) is a widely embraced paradigm for distilling artificial intelligence from distributed mobile data. However, the deployment of FL in mobile networks can be compromised by exposure to interference from neighboring cells or jammers. Existing interference mitigation techniques require multi-cell cooperation or at least interference channel state information, which is expensive in practice. On the other hand, power control that treats interference as noise may not be effective due to limited power budgets, and also that this mechanism can trigger countermeasures by interference sources. As a practical approach for protecting FL against interference, we propose Spectrum Breathing, which cascades stochastic-gradient pruning and spread spectrum to suppress interference without bandwidth expansion. The cost is higher learning latency by exploiting the graceful degradation of learning speed due to pruning. We synchronize the two operations such that their levels are controlled by the same parameter, Breathing Depth. To optimally control the parameter, we develop a martingale-based approach to convergence analysis of Over-the-Air FL with spectrum breathing, termed AirBreathing FL. We show a performance tradeoff between gradient-pruning and interference-induced error as regulated by the breathing depth. Given receive SIR and model size, the optimization of the tradeoff yields two schemes for controlling the breathing depth that can be either fixed or adaptive to channels and the learning process. As shown by experiments, in scenarios where traditional Over-the-Air FL fails to converge in the presence of strong interference, AirBreahing FL with either fixed or adaptive breathing depth can ensure convergence where the adaptive scheme achieves close-to-ideal performance.

We present CEMA: Causal Explanations for Multi-Agent decision-making; a system to generate causal explanations for agents' decisions in stochastic sequential multi-agent environments. The core of CEMA is a novel causal selection method which, unlike prior work that assumes a specific causal structure, is applicable whenever a probabilistic model for predicting future states of the environment is available. We sample counterfactual worlds with this model which are used to identify and rank the salient causes behind decisions. We also designed CEMA to meet the requirements of social explainable AI. It can generate contrastive explanations based on selected causes and it works as an interaction loop with users to assure relevance and intelligibility for them. We implement CEMA for motion planning for autonomous driving and test it in four diverse simulated scenarios. We show that CEMA correctly and robustly identifies the relevant causes behind decisions and delivers relevant explanations to users' queries.

Channel splicing is a rather new and very promising concept. It allows to realize a wideband channel sounder by combining multiple narrow-band measurements. Among others, channel splicing is a sparse sensing techniques suggested for use in joint communication and sensing (JCAS), channel measurements and prediction using cheap hardware that cannot measure wideband channels directly such as in the internet of things (IoT). This work validates the practicality of a channel splicing technique by integrating it into an OFDM-based IEEE 802.11ac system, which we consider representative for many IoT solutions. Our system allows computing both the channel impulse response (CIR) and the channel frequency response (CFR). In this paper, we concentrate on the impact of the number of sub-bands in our study and show that even using only 50% of the overall spectrum leads to very accurate CIR measures. We validate the system in simulation and confirm the results in an experimental in-door scenario using software defined radios.

Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.

Training machine learning models in a meaningful order, from the easy samples to the hard ones, using curriculum learning can provide performance improvements over the standard training approach based on random data shuffling, without any additional computational costs. Curriculum learning strategies have been successfully employed in all areas of machine learning, in a wide range of tasks. However, the necessity of finding a way to rank the samples from easy to hard, as well as the right pacing function for introducing more difficult data can limit the usage of the curriculum approaches. In this survey, we show how these limits have been tackled in the literature, and we present different curriculum learning instantiations for various tasks in machine learning. We construct a multi-perspective taxonomy of curriculum learning approaches by hand, considering various classification criteria. We further build a hierarchical tree of curriculum learning methods using an agglomerative clustering algorithm, linking the discovered clusters with our taxonomy. At the end, we provide some interesting directions for future work.

We study the problem of learning representations of entities and relations in knowledge graphs for predicting missing links. The success of such a task heavily relies on the ability of modeling and inferring the patterns of (or between) the relations. In this paper, we present a new approach for knowledge graph embedding called RotatE, which is able to model and infer various relation patterns including: symmetry/antisymmetry, inversion, and composition. Specifically, the RotatE model defines each relation as a rotation from the source entity to the target entity in the complex vector space. In addition, we propose a novel self-adversarial negative sampling technique for efficiently and effectively training the RotatE model. Experimental results on multiple benchmark knowledge graphs show that the proposed RotatE model is not only scalable, but also able to infer and model various relation patterns and significantly outperform existing state-of-the-art models for link prediction.

北京阿比特科技有限公司