亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dense retrieval overcome the lexical gap and has shown great success in ad-hoc information retrieval (IR). Despite their success, dense retrievers are expensive to serve across practical use cases. For use cases requiring to search from millions of documents, the dense index becomes bulky and requires high memory usage for storing the index. More recently, learning-to-hash (LTH) techniques, for e.g., BPR and JPQ, produce binary document vectors, thereby reducing the memory requirement to efficiently store the dense index. LTH techniques are supervised and finetune the retriever using a ranking loss. They outperform their counterparts, i.e., traditional out-of-the-box vector compression techniques such as PCA or PQ. A missing piece from prior work is that existing techniques have been evaluated only in-domain, i.e., on a single dataset such as MS MARCO. In our work, we evaluate LTH and vector compression techniques for improving the downstream zero-shot retrieval accuracy of the TAS-B dense retriever while maintaining efficiency at inference. Our results demonstrate that, unlike prior work, LTH strategies when applied naively can underperform the zero-shot TAS-B dense retriever on average by up to 14% nDCG@10 on the BEIR benchmark. To solve this limitation, in our work, we propose an easy yet effective solution of injecting domain adaptation with existing supervised LTH techniques. We experiment with two well-known unsupervised domain adaptation techniques: GenQ and GPL. Our domain adaptation injection technique can improve the downstream zero-shot retrieval effectiveness for both BPR and JPQ variants of the TAS-B model by on average 11.5% and 8.2% nDCG@10 while both maintaining 32$\times$ memory efficiency and 14$\times$ and 2$\times$ speedup respectively in CPU retrieval latency on BEIR. All our code, models, and data are publicly available at //github.com/thakur-nandan/income.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

The Harrisonburg Department of Public Transportation (HDPT) aims to leverage their data to improve the efficiency and effectiveness of their operations. We construct two supply and demand models that help the department identify gaps in their service. The models take many variables into account, including the way that the HDPT reports to the federal government and the areas with the most vulnerable populations in Harrisonburg City. We employ data analysis and machine learning techniques to make our predictions.

We prove the converse of the universal approximation theorem, i.e. a neural network (NN) encoding theorem which shows that for every stably converged NN of continuous activation functions, its weight matrix actually encodes a continuous function that approximates its training dataset to within a finite margin of error over a bounded domain. We further show that using the Eckart-Young theorem for truncated singular value decomposition of the weight matrix for every NN layer, we can illuminate the nature of the latent space manifold of the training dataset encoded and represented by every NN layer, and the geometric nature of the mathematical operations performed by each NN layer. Our results have implications for understanding how NNs break the curse of dimensionality by harnessing memory capacity for expressivity, and that the two are complementary. This Layer Matrix Decomposition (LMD) further suggests a close relationship between eigen-decomposition of NN layers and the latest advances in conceptualizations of Hopfield networks and Transformer NN models.

Radiologists possess diverse training and clinical experiences, leading to variations in the segmentation annotations of lung nodules and resulting in segmentation uncertainty.Conventional methods typically select a single annotation as the learning target or attempt to learn a latent space comprising multiple annotations. However, these approaches fail to leverage the valuable information inherent in the consensus and disagreements among the multiple annotations. In this paper, we propose an Uncertainty-Aware Attention Mechanism (UAAM) that utilizes consensus and disagreements among multiple annotations to facilitate better segmentation. To this end, we introduce the Multi-Confidence Mask (MCM), which combines a Low-Confidence (LC) Mask and a High-Confidence (HC) Mask.The LC mask indicates regions with low segmentation confidence, where radiologists may have different segmentation choices. Following UAAM, we further design an Uncertainty-Guide Multi-Confidence Segmentation Network (UGMCS-Net), which contains three modules: a Feature Extracting Module that captures a general feature of a lung nodule, an Uncertainty-Aware Module that produces three features for the the annotations' union, intersection, and annotation set, and an Intersection-Union Constraining Module that uses distances between the three features to balance the predictions of final segmentation and MCM. To comprehensively demonstrate the performance of our method, we propose a Complex Nodule Validation on LIDC-IDRI, which tests UGMCS-Net's segmentation performance on lung nodules that are difficult to segment using common methods. Experimental results demonstrate that our method can significantly improve the segmentation performance on nodules that are difficult to segment using conventional methods.

The presence of a large number of bots in Online Social Networks (OSN) leads to undesirable social effects. Graph neural networks (GNNs) are effective in detecting bots as they utilize user interactions. However, class-imbalanced issues can affect bot detection performance. To address this, we propose an over-sampling strategy for GNNs (OS-GNN) that generates samples for the minority class without edge synthesis. First, node features are mapped to a feature space through neighborhood aggregation. Then, we generate samples for the minority class in the feature space. Finally, the augmented features are used to train the classifiers. This framework is general and can be easily extended into different GNN architectures. The proposed framework is evaluated using three real-world bot detection benchmark datasets, and it consistently exhibits superiority over the baselines.

With the exponentially scaled World Wide Web, the standard HTTP protocol has started showing its limitations. With the increased amount of data duplication & accidental deletion of files on the Internet, the P2P file system called IPFS completely changes the way files are stored. IPFS is a file storage protocol allowing files to be stored on decentralized systems. In the HTTP client-server protocol, files are downloaded from a single source. With files stored on a decentralized network, IPFS allows packet retrieval from multiple sources, simultaneously saving considerable bandwidth. IPFS uses a content-addressed block storage model with content-addressed hyperlinks. Large amounts of data is addressable with IPFS with the immutable and permanent IPFS links with meta-data stored as Blockchain transactions. This timestamps and secures the data, instead of having to put it on the chain itself. Our paper proposes a model that uses the decentralized file storage system of IPFS, and the integrity preservation properties of the Blockchain, to store and distribute data on the Web.

We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.

The SOTA in transcription of disfluent and conversational speech has in recent years favored two-stage models, with separate transcription and cleaning stages. We believe that previous attempts at end-to-end disfluency removal have fallen short because of the representational advantage that large-scale language model pretraining has given to lexical models. Until recently, the high dimensionality and limited availability of large audio datasets inhibited the development of large-scale self-supervised pretraining objectives for learning effective audio representations, giving a relative advantage to the two-stage approach, which utilises pretrained representations for lexical tokens. In light of recent successes in large scale audio pretraining, we revisit the performance comparison between two-stage and end-to-end model and find that audio based language models pretrained using weak self-supervised objectives match or exceed the performance of similarly trained two-stage models, and further, that the choice of pretraining objective substantially effects a model's ability to be adapted to the disfluency removal task.

Contrastive loss has been increasingly used in learning representations from multiple modalities. In the limit, the nature of the contrastive loss encourages modalities to exactly match each other in the latent space. Yet it remains an open question how the modality alignment affects the downstream task performance. In this paper, based on an information-theoretic argument, we first prove that exact modality alignment is sub-optimal in general for downstream prediction tasks. Hence we advocate that the key of better performance lies in meaningful latent modality structures instead of perfect modality alignment. To this end, we propose three general approaches to construct latent modality structures. Specifically, we design 1) a deep feature separation loss for intra-modality regularization; 2) a Brownian-bridge loss for inter-modality regularization; and 3) a geometric consistency loss for both intra- and inter-modality regularization. Extensive experiments are conducted on two popular multi-modal representation learning frameworks: the CLIP-based two-tower model and the ALBEF-based fusion model. We test our model on a variety of tasks including zero/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on latent modality structure regularization.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

北京阿比特科技有限公司