亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the robust principal component analysis (RPCA) problem in a distributed setting. The goal of RPCA is to find an underlying low-rank estimation for a raw data matrix when the data matrix is subject to the corruption of gross sparse errors. Previous studies have developed RPCA algorithms that provide stable solutions with fast convergence. However, these algorithms are typically hard to scale and cannot be implemented distributedly, due to the use of either SVD or large matrix multiplication. In this paper, we propose the first distributed robust principal analysis algorithm based on consensus factorization, dubbed DCF-PCA. We prove the convergence of DCF-PCA and evaluate DCF-PCA on various problem setting

相關內容

Semantic segmentation is a challenging computer vision task demanding a significant amount of pixel-level annotated data. Producing such data is a time-consuming and costly process, especially for domains with a scarcity of experts, such as medicine or forensic anthropology. While numerous semi-supervised approaches have been developed to make the most from the limited labeled data and ample amount of unlabeled data, domain-specific real-world datasets often have characteristics that both reduce the effectiveness of off-the-shelf state-of-the-art methods and also provide opportunities to create new methods that exploit these characteristics. We propose and evaluate a semi-supervised method that reuses available labels for unlabeled images of a dataset by exploiting existing similarities, while dynamically weighting the impact of these reused labels in the training process. We evaluate our method on a large dataset of human decomposition images and find that our method, while conceptually simple, outperforms state-of-the-art consistency and pseudo-labeling-based methods for the segmentation of this dataset. This paper includes graphic content of human decomposition.

This work-in-progress report presents both the design and partial evaluation of distributed execution indexing, a technique for microservice applications that precisely identifies dynamic instances of inter-service remote procedure calls (RPCs). Such an indexing scheme is critical for request-level fault injection techniques, which aim to automatically find failure-handling bugs in microservice applications.Distributed execution indexes enable granular specification of request-level faults, while also establishing a correspondence between inter-service RPCs across multiple executions, as is required to perform a systematic search of the fault space.In this paper, we formally define the general concept of a distributed execution index, which can be parameterized on different ways of identifying an RPC in a single service. We identify an instantiation that maintains precision in the presence of a variety of program structure complexities such as loops, function indirection, and concurrency with scheduling nondeterminism. We demonstrate that this particular instantiation addresses gaps in the state-of-the-art in request-level fault injection and show that they are all special cases of distributed execution indexing. We discuss the implementation challenges and provide an implementation of distributed execution indexing as an extension of \Filibuster{}, a resilience testing tool for microservice applications for the Java programming language, which supports fault injection for gRPC and HTTP.

Federated learning, where algorithms are trained across multiple decentralized devices without sharing local data, is increasingly popular in distributed machine learning practice. Typically, a graph structure $G$ exists behind local devices for communication. In this work, we consider parameter estimation in federated learning with data distribution and communication heterogeneity, as well as limited computational capacity of local devices. We encode the distribution heterogeneity by parametrizing distributions on local devices with a set of distinct $p$-dimensional vectors. We then propose to jointly estimate parameters of all devices under the $M$-estimation framework with the fused Lasso regularization, encouraging an equal estimate of parameters on connected devices in $G$. We provide a general result for our estimator depending on $G$, which can be further calibrated to obtain convergence rates for various specific problem setups. Surprisingly, our estimator attains the optimal rate under certain graph fidelity condition on $G$, as if we could aggregate all samples sharing the same distribution. If the graph fidelity condition is not met, we propose an edge selection procedure via multiple testing to ensure the optimality. To ease the burden of local computation, a decentralized stochastic version of ADMM is provided, with convergence rate $O(T^{-1}\log T)$ where $T$ denotes the number of iterations. We highlight that, our algorithm transmits only parameters along edges of $G$ at each iteration, without requiring a central machine, which preserves privacy. We further extend it to the case where devices are randomly inaccessible during the training process, with a similar algorithmic convergence guarantee. The computational and statistical efficiency of our method is evidenced by simulation experiments and the 2020 US presidential election data set.

The CP decomposition for high dimensional non-orthogonal spiked tensors is an important problem with broad applications across many disciplines. However, previous works with theoretical guarantee typically assume restrictive incoherence conditions on the basis vectors for the CP components. In this paper, we propose new computationally efficient composite PCA and concurrent orthogonalization algorithms for tensor CP decomposition with theoretical guarantees under mild incoherence conditions. The composite PCA applies the principal component or singular value decompositions twice, first to a matrix unfolding of the tensor data to obtain singular vectors and then to the matrix folding of the singular vectors obtained in the first step. It can be used as an initialization for any iterative optimization schemes for the tensor CP decomposition. The concurrent orthogonalization algorithm iteratively estimates the basis vector in each mode of the tensor by simultaneously applying projections to the orthogonal complements of the spaces generated by other CP components in other modes. It is designed to improve the alternating least squares estimator and other forms of the high order orthogonal iteration for tensors with low or moderately high CP ranks, and it is guaranteed to converge rapidly when the error of any given initial estimator is bounded by a small constant. Our theoretical investigation provides estimation accuracy and convergence rates for the two proposed algorithms. Both proposed algorithms are applicable to deterministic tensor, its noisy version, and the order-$2K$ covariance tensor of order-$K$ tensor data in a factor model with uncorrelated factors. Our implementations on synthetic data demonstrate significant practical superiority of our approach over existing methods.

In data science, vector autoregression (VAR) models are popular in modeling multivariate time series in the environmental sciences and other applications. However, these models are computationally complex with the number of parameters scaling quadratically with the number of time series. In this work, we propose a so-called neighborhood vector autoregression (NVAR) model to efficiently analyze large-dimensional multivariate time series. We assume that the time series have underlying neighborhood relationships, e.g., spatial or network, among them based on the inherent setting of the problem. When this neighborhood information is available or can be summarized using a distance matrix, we demonstrate that our proposed NVAR method provides a computationally efficient and theoretically sound estimation of model parameters. The performance of the proposed method is compared with other existing approaches in both simulation studies and a real application of stream nitrogen study.

The Stackelberg game model, where a leader commits to a strategy and the follower best responds, has found widespread application, particularly to security problems. In the security setting, the goal is for the leader to compute an optimal strategy to commit to, in order to protect some asset. In many of these applications, the parameters of the follower utility model are not known with certainty. Distributionally-robust optimization addresses this issue by allowing a distribution over possible model parameters, where this distribution comes from a set of possible distributions. The goal is to maximize the expected utility with respect to the worst-case distribution. We initiate the study of distributionally-robust models for computing the optimal strategy to commit to. We consider the case of normal-form games with uncertainty about the follower utility model. Our main theoretical result is to show that a distributionally-robust Stackelberg equilibrium always exists across a wide array of uncertainty models. For the case of a finite set of possible follower utility functions we present two algorithms to compute a distributionally-robust strong Stackelberg equilibrium (DRSSE) using mathematical programs. Next, in the general case where there is an infinite number of possible follower utility functions and the uncertainty is represented by a Wasserstein ball around a finitely-supported nominal distribution, we give an incremental mixed-integer-programming-based algorithm for computing the optimal distributionally-robust strategy. Experiments substantiate the tractability of our algorithm on a classical Stackelberg game, showing that our approach scales to medium-sized games.

Contrastive learning has recently shown immense potential in unsupervised visual representation learning. Existing studies in this track mainly focus on intra-image invariance learning. The learning typically uses rich intra-image transformations to construct positive pairs and then maximizes agreement using a contrastive loss. The merits of inter-image invariance, conversely, remain much less explored. One major obstacle to exploit inter-image invariance is that it is unclear how to reliably construct inter-image positive pairs, and further derive effective supervision from them since no pair annotations are available. In this work, we present a comprehensive empirical study to better understand the role of inter-image invariance learning from three main constituting components: pseudo-label maintenance, sampling strategy, and decision boundary design. To facilitate the study, we introduce a unified and generic framework that supports the integration of unsupervised intra- and inter-image invariance learning. Through carefully-designed comparisons and analysis, multiple valuable observations are revealed: 1) online labels converge faster and perform better than offline labels; 2) semi-hard negative samples are more reliable and unbiased than hard negative samples; 3) a less stringent decision boundary is more favorable for inter-image invariance learning. With all the obtained recipes, our final model, namely InterCLR, shows consistent improvements over state-of-the-art intra-image invariance learning methods on multiple standard benchmarks. We hope this work will provide useful experience for devising effective unsupervised inter-image invariance learning. Code: //github.com/open-mmlab/mmselfsup.

Distributional shift, or the mismatch between training and deployment data, is a significant obstacle to the usage of machine learning in high-stakes industrial applications, such as autonomous driving and medicine. This creates a need to be able to assess how robustly ML models generalize as well as the quality of their uncertainty estimates. Standard ML baseline datasets do not allow these properties to be assessed, as the training, validation and test data are often identically distributed. Recently, a range of dedicated benchmarks have appeared, featuring both distributionally matched and shifted data. Among these benchmarks, the Shifts dataset stands out in terms of the diversity of tasks as well as the data modalities it features. While most of the benchmarks are heavily dominated by 2D image classification tasks, Shifts contains tabular weather forecasting, machine translation, and vehicle motion prediction tasks. This enables the robustness properties of models to be assessed on a diverse set of industrial-scale tasks and either universal or directly applicable task-specific conclusions to be reached. In this paper, we extend the Shifts Dataset with two datasets sourced from industrial, high-risk applications of high societal importance. Specifically, we consider the tasks of segmentation of white matter Multiple Sclerosis lesions in 3D magnetic resonance brain images and the estimation of power consumption in marine cargo vessels. Both tasks feature ubiquitous distributional shifts and a strict safety requirement due to the high cost of errors. These new datasets will allow researchers to further explore robust generalization and uncertainty estimation in new situations. In this work, we provide a description of the dataset and baseline results for both tasks.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

北京阿比特科技有限公司