亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Safety is the primary priority of autonomous driving. Nevertheless, no published dataset currently supports the direct and explainable safety evaluation for autonomous driving. In this work, we propose DeepAccident, a large-scale dataset generated via a realistic simulator containing diverse accident scenarios that frequently occur in real-world driving. The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset with 40k annotated samples. In addition, we propose a new task, end-to-end motion and accident prediction, which can be used to directly evaluate the accident prediction ability for different autonomous driving algorithms. Furthermore, for each scenario, we set four vehicles along with one infrastructure to record data, thus providing diverse viewpoints for accident scenarios and enabling V2X (vehicle-to-everything) research on perception and prediction tasks. Finally, we present a baseline V2X model named V2XFormer that demonstrates superior performance for motion and accident prediction and 3D object detection compared to the single-vehicle model.

相關內容

Object location prior is critical for the standard 6D object pose estimation setting. The prior can be used to initialize the 3D object translation and facilitate 3D object rotation estimation. Unfortunately, the object detectors that are used for this purpose do not generalize to unseen objects. Therefore, existing 6D pose estimation methods for unseen objects either assume the ground-truth object location to be known or yield inaccurate results when it is unavailable. In this paper, we address this problem by developing a method, LocPoseNet, able to robustly learn location prior for unseen objects. Our method builds upon a template matching strategy, where we propose to distribute the reference kernels and convolve them with a query to efficiently compute multi-scale correlations. We then introduce a novel translation estimator, which decouples scale-aware and scale-robust features to predict different object location parameters. Our method outperforms existing works by a large margin on LINEMOD and GenMOP. We further construct a challenging synthetic dataset, which allows us to highlight the better robustness of our method to various noise sources. Our project website is at: //sailor-z.github.io/projects/3DV2024_LocPoseNet.html.

In autonomous driving, LiDAR and radar are crucial for environmental perception. LiDAR offers precise 3D spatial sensing information but struggles in adverse weather like fog. Conversely, radar signals can penetrate rain or mist due to their specific wavelength but are prone to noise disturbances. Recent state-of-the-art works reveal that the fusion of radar and LiDAR can lead to robust detection in adverse weather. The existing works adopt convolutional neural network architecture to extract features from each sensor data, then align and aggregate the two branch features to predict object detection results. However, these methods have low accuracy of predicted bounding boxes due to a simple design of label assignment and fusion strategies. In this paper, we propose a bird's-eye view fusion learning-based anchor box-free object detection system, which fuses the feature derived from the radar range-azimuth heatmap and the LiDAR point cloud to estimate possible objects. Different label assignment strategies have been designed to facilitate the consistency between the classification of foreground or background anchor points and the corresponding bounding box regressions. Furthermore, the performance of the proposed object detector is further enhanced by employing a novel interactive transformer module. The superior performance of the methods proposed in this paper has been demonstrated using the recently published Oxford Radar RobotCar dataset. Our system's average precision significantly outperforms the state-of-the-art method by 13.1% and 19.0% at Intersection of Union (IoU) of 0.8 under 'Clear+Foggy' training conditions for 'Clear' and 'Foggy' testing, respectively.

In response to the evolving challenges posed by small unmanned aerial vehicles (UAVs), which possess the potential to transport harmful payloads or independently cause damage, we introduce MMAUD: a comprehensive Multi-Modal Anti-UAV Dataset. MMAUD addresses a critical gap in contemporary threat detection methodologies by focusing on drone detection, UAV-type classification, and trajectory estimation. MMAUD stands out by combining diverse sensory inputs, including stereo vision, various Lidars, Radars, and audio arrays. It offers a unique overhead aerial detection vital for addressing real-world scenarios with higher fidelity than datasets captured on specific vantage points using thermal and RGB. Additionally, MMAUD provides accurate Leica-generated ground truth data, enhancing credibility and enabling confident refinement of algorithms and models, which has never been seen in other datasets. Most existing works do not disclose their datasets, making MMAUD an invaluable resource for developing accurate and efficient solutions. Our proposed modalities are cost-effective and highly adaptable, allowing users to experiment and implement new UAV threat detection tools. Our dataset closely simulates real-world scenarios by incorporating ambient heavy machinery sounds. This approach enhances the dataset's applicability, capturing the exact challenges faced during proximate vehicular operations. It is expected that MMAUD can play a pivotal role in advancing UAV threat detection, classification, trajectory estimation capabilities, and beyond. Our dataset, codes, and designs will be available in //github.com/ntu-aris/MMAUD.

Vision Transformers (ViTs) have emerged as powerful models in the field of computer vision, delivering superior performance across various vision tasks. However, the high computational complexity poses a significant barrier to their practical applications in real-world scenarios. Motivated by the fact that not all tokens contribute equally to the final predictions and fewer tokens bring less computational cost, reducing redundant tokens has become a prevailing paradigm for accelerating vision transformers. However, we argue that it is not optimal to either only reduce inattentive redundancy by token pruning, or only reduce duplicative redundancy by token merging. To this end, in this paper we propose a novel acceleration framework, namely token Pruning & Pooling Transformers (PPT), to adaptively tackle these two types of redundancy in different layers. By heuristically integrating both token pruning and token pooling techniques in ViTs without additional trainable parameters, PPT effectively reduces the model complexity while maintaining its predictive accuracy. For example, PPT reduces over 37% FLOPs and improves the throughput by over 45% for DeiT-S without any accuracy drop on the ImageNet dataset. The code is available at //github.com/xjwu1024/PPT and //github.com/mindspore-lab/models/

Techniques of computer systems that have been successfully deployed for dense regular workloads fall short of achieving their goals of scalability and efficiency when applied to irregular and dynamic applications. This is primarily due to the discontent between the multiple layers of the system design from hardware architecture, execution model, programming model, to data-structure and application code. The paper approaches this issue by addressing all layers of the system design. It presents and argues key design principles needed for scalable and efficient dynamic graph processing, and from which it builds: 1) a fine-grain memory driven architecture that supports asynchronous active messages, 2) a programming and execution model that allows spawning tasks from within the data-parallelism, 3) and a data-structure that parallelizes vertex object across many compute cells and yet provides a single programming abstraction to the data object. Simulated experimental results show performance gain of geomean $2.38 \times$ against an state-of-the-art similar system for graph traversals and yet being able to natively support dynamic graph processing. It uses programming abstractions of actions, introduces new dynamic graph storage scheme, and message delivery mechanisms with continuations that contain post-completion actions. Continuations seamlessly adjusts, prior or running, execution to mutations in the input graph and enable dynamic graph processing.

High-definition (HD) cameras for surveillance and road traffic have experienced tremendous growth, demanding intensive computation resources for real-time analytics. Recently, offloading frames from the front-end device to the back-end edge server has shown great promise. In multi-stream competitive environments, efficient bandwidth management and proper scheduling are crucial to ensure both high inference accuracy and high throughput. To achieve this goal, we propose BiSwift, a bi-level framework that scales the concurrent real-time video analytics by a novel adaptive hybrid codec integrated with multi-level pipelines, and a global bandwidth controller for multiple video streams. The lower-level front-back-end collaborative mechanism (called adaptive hybrid codec) locally optimizes the accuracy and accelerates end-to-end video analytics for a single stream. The upper-level scheduler aims to accuracy fairness among multiple streams via the global bandwidth controller. The evaluation of BiSwift shows that BiSwift is able to real-time object detection on 9 streams with an edge device only equipped with an NVIDIA RTX3070 (8G) GPU. BiSwift improves 10%$\sim$21% accuracy and presents 1.2$\sim$9$\times$ throughput compared with the state-of-the-art video analytics pipelines.

The advances of deep learning (DL) have paved the way for automatic software vulnerability repair approaches, which effectively learn the mapping from the vulnerable code to the fixed code. Nevertheless, existing DL-based vulnerability repair methods face notable limitations: 1) they struggle to handle lengthy vulnerable code, 2) they treat code as natural language texts, neglecting its inherent structure, and 3) they do not tap into the valuable expert knowledge present in the expert system. To address this, we propose VulMaster, a Transformer-based neural network model that excels at generating vulnerability repairs by comprehensively understanding the entire vulnerable code, irrespective of its length. This model also integrates diverse information, encompassing vulnerable code structures and expert knowledge from the CWE system. We evaluated VulMaster on a real-world C/C++ vulnerability repair dataset comprising 1,754 projects with 5,800 vulnerable functions. The experimental results demonstrated that VulMaster exhibits substantial improvements compared to the learning-based state-of-the-art vulnerability repair approach. Specifically, VulMaster improves the EM, BLEU, and CodeBLEU scores from 10.2\% to 20.0\%, 21.3\% to 29.3\%, and 32.5\% to 40.9\%, respectively.

Generating rich and controllable motion is a pivotal challenge in video synthesis. We propose Boximator, a new approach for fine-grained motion control. Boximator introduces two constraint types: hard box and soft box. Users select objects in the conditional frame using hard boxes and then use either type of boxes to roughly or rigorously define the object's position, shape, or motion path in future frames. Boximator functions as a plug-in for existing video diffusion models. Its training process preserves the base model's knowledge by freezing the original weights and training only the control module. To address training challenges, we introduce a novel self-tracking technique that greatly simplifies the learning of box-object correlations. Empirically, Boximator achieves state-of-the-art video quality (FVD) scores, improving on two base models, and further enhanced after incorporating box constraints. Its robust motion controllability is validated by drastic increases in the bounding box alignment metric. Human evaluation also shows that users favor Boximator generation results over the base model.

Recently, there have been significant advancements in Image Restoration based on CNN and transformer. However, the inherent characteristics of the Image Restoration task are often overlooked in many works. These works often focus on the basic block design and stack numerous basic blocks to the model, leading to redundant parameters and unnecessary computations and hindering the efficiency of the image restoration. In this paper, we propose a Lightweight Image Restoration network called LIR to efficiently remove degradation (blur, rain, noise, haze, etc.). A key component in LIR is the Efficient Adaptive Attention (EAA) Block, which is mainly composed of Adaptive Filters and Attention Blocks. It is capable of adaptively sharpening contours, removing degradation, and capturing global information in various image restoration scenes in an efficient and computation-friendly manner. In addition, through a simple structural design, LIR addresses the degradations existing in the local and global residual connections that are ignored by modern networks. Extensive experiments demonstrate that our LIR achieves comparable performance to state-of-the-art networks on most benchmarks with fewer parameters and computations. It is worth noting that our LIR produces better visual results than state-of-the-art networks that are more in line with the human aesthetic.

Adapting the Diffusion Probabilistic Model (DPM) for direct image super-resolution is wasteful, given that a simple Convolutional Neural Network (CNN) can recover the main low-frequency content. Therefore, we present ResDiff, a novel Diffusion Probabilistic Model based on Residual structure for Single Image Super-Resolution (SISR). ResDiff utilizes a combination of a CNN, which restores primary low-frequency components, and a DPM, which predicts the residual between the ground-truth image and the CNN predicted image. In contrast to the common diffusion-based methods that directly use LR images to guide the noise towards HR space, ResDiff utilizes the CNN's initial prediction to direct the noise towards the residual space between HR space and CNN-predicted space, which not only accelerates the generation process but also acquires superior sample quality. Additionally, a frequency-domain-based loss function for CNN is introduced to facilitate its restoration, and a frequency-domain guided diffusion is designed for DPM on behalf of predicting high-frequency details. The extensive experiments on multiple benchmark datasets demonstrate that ResDiff outperforms previous diffusion based methods in terms of shorter model convergence time, superior generation quality, and more diverse samples.

北京阿比特科技有限公司