亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

To sustain communication reliability and use the harvested energy effectively, it is crucial to consider energy sharing between energy harvesting tags (EHT) in a multiple access network, which are basic building blocks for the internet of things (IoT) applications. This technique also achieves higher throughput compared with the non-cooperative strategies despite energy losses occurred during energy transfer. We propose an energy cooperative communication strategy for a multiple access network of tags that depends on the harvested battery energy. We develop an optimal transmission policy for EHTs that maximizes the long-term joint average throughput using a Markov decision process (MDP) model. Simulation results show that the proposed energy cooperative policy produces improved performance than traditional policies.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

In this paper, a novel uplink communication for the transmissive reconfigurable metasurface (RMS) multi-antenna system with orthogonal frequency division multiple access (OFDMA) is investigated. Specifically, a transmissive RMS-based receiver equipped with a single receiving antenna is first proposed, and a far-near field channel model based on planar waves and spherical waves is given. Then, in order to maximize the system sum-rate of uplink communications, we formulate a joint optimization problem over subcarrier allocation, power allocation and RMS transmissive coefficient design. Due to the coupling of optimization variables, the optimization problem is non-convex, so it is challenging to solve it directly. In order to tackle this problem, the alternating optimization (AO) algorithm is used to decouple the optimization variables and divide the problem into two sub-problems to solve. First, the problem of joint subcarrier allocation and power allocation is solved via the Lagrangian dual decomposition method. Then, the RMS transmissive coefficient design can be obtained by applying difference-of-convex (DC) programming, successive convex approximation (SCA) and penalty function methods. Finally, the two sub-problems are iterated alternately until convergence is achieved. Numerical simulation results verify that the proposed algorithm has good convergence performance and can improve system sum-rate compared with other benchmark algorithms.

Energy storage can play an important role in energy management of end users. To promote an efficient utilization of energy storage, we develop a novel business model to enable virtual storage sharing among a group of users. Specifically, a storage aggregator invests and operates the central physical storage unit, by virtualizing it into separable virtual capacities and selling to users. Each user purchases the virtual capacity, and utilize it to reduce the energy cost. We formulate the interaction between the aggregator and users as a two-stage optimization problem. In Stage 1, over the investment horizon, the aggregator determines the investment and pricing decisions. In Stage 2, in each operational horizon, each user decides the virtual capacity to purchase together with the operation of the virtual storage. We characterize a stepwise form of the optimal solution of Stage-2 Problem and a piecewise linear structure of the optimal profit of Stage-1 Problem, both with respect to the virtual capacity price. Based on the solution structure, we design an algorithm to attain the optimal solution of the two-stage problem. In our simulation results, the proposed storage virtualization model can reduce the physical energy storage investment of the aggregator by 54.3% and reduce the users' total costs by 34.7%, compared to the case where users acquire their own physical storage.

Many applications require robots to move through terrain with large obstacles, such as self-driving, search and rescue, and extraterrestrial exploration. Although robots are already excellent at avoiding sparse obstacles, they still struggle in traversing cluttered obstacles. Inspired by cockroaches that use and respond to physical interaction with obstacles in various ways to traverse grass-like beams with different stiffness, here we developed a physics model of a minimalistic robot capable of environmental force sensing propelled forward to traverse two beams to simulate and understand the traversal of cluttered obstacles. Beam properties like stiffness and deflection locations could be estimated from the noisy beam contact forces measured, whose fidelity increased with sensing time. Using these estimates, the model predicted the cost of traversal defined using potential energy barriers and used it to plan and control the robot to generate and track a trajectory to traverse with minimal cost. When encountering stiff beams, the simulation robot transitioned from a more costly pitch mode to a less costly roll mode to traverse. When encountering flimsy beams, it chose to push cross beams with less energy cost than avoiding beams. Finally, we developed a physical robot and demonstrated the usefulness of the estimation method.

Generating realistic vehicle speed trajectories is a crucial component in evaluating vehicle fuel economy and in predictive control of self-driving cars. Traditional generative models rely on Markov chain methods and can produce accurate synthetic trajectories but are subject to the curse of dimensionality. They do not allow to include conditional input variables into the generation process. In this paper, we show how extensions to deep generative models allow accurate and scalable generation. Proposed architectures involve recurrent and feed-forward layers and are trained using adversarial techniques. Our models are shown to perform well on generating vehicle trajectories using a model trained on GPS data from Chicago metropolitan area.

Federated learning (FL) has recently emerged as a promising technology to enable artificial intelligence (AI) at the network edge, where distributed mobile devices collaboratively train a shared AI model under the coordination of an edge server. To significantly improve the communication efficiency of FL, over-the-air computation allows a large number of mobile devices to concurrently upload their local models by exploiting the superposition property of wireless multi-access channels. Due to wireless channel fading, the model aggregation error at the edge server is dominated by the weakest channel among all devices, causing severe straggler issues. In this paper, we propose a relay-assisted cooperative FL scheme to effectively address the straggler issue. In particular, we deploy multiple half-duplex relays to cooperatively assist the devices in uploading the local model updates to the edge server. The nature of the over-the-air computation poses system objectives and constraints that are distinct from those in traditional relay communication systems. Moreover, the strong coupling between the design variables renders the optimization of such a system challenging. To tackle the issue, we propose an alternating-optimization-based algorithm to optimize the transceiver and relay operation with low complexity. Then, we analyze the model aggregation error in a single-relay case and show that our relay-assisted scheme achieves a smaller error than the one without relays provided that the relay transmit power and the relay channel gains are sufficiently large. The analysis provides critical insights on relay deployment in the implementation of cooperative FL. Extensive numerical results show that our design achieves faster convergence compared with state-of-the-art schemes.

Fast and reliable connectivity is essential to enhancing situational awareness and operational efficiency for public safety mission-critical (MC) users. In emergency or disaster circumstances, where existing cellular network coverage and capacity may not be available to meet MC communication demands, deployable-network-based solutions such as cells-on-wheels/wings can be utilized swiftly to ensure reliable connection for MC users. In this paper, we consider a scenario where a macro base station (BS) is destroyed due to a natural disaster and an unmanned aerial vehicle carrying BS (UAV-BS) is set up to provide temporary coverage for users in the disaster area. The UAV-BS is integrated into the mobile network using the 5G integrated access and backhaul (IAB) technology. We propose a framework and signalling procedure for applying machine learning to this use case. A deep reinforcement learning algorithm is designed to jointly optimize the access and backhaul antenna tilt as well as the three-dimensional location of the UAV-BS in order to best serve the on-ground MC users while maintaining a good backhaul connection. Our result shows that the proposed algorithm can autonomously navigate and configure the UAV-BS to improve the throughput and reduce the drop rate of MC users.

Time Slotted Channel Hopping (TSCH) is a Medium Access Control (MAC) protocol introduced in IEEE802.15.4e standard, addressing low power requirements of the Internet of Things (IoT) and Low Power Lossy Networks (LLNs). The 6TiSCH Operation sublayer (6top) of IEEE802.15.4e defines the schedule that includes sleep, transmit and receive routines of the nodes. However, the design of schedule is not specified by the standard. In this paper, we propose a contention based proportional fairness (CBPF) transmission scheme for TSCH networks to maximize the system throughput addressing fair allocation of resources to the nodes. We propose a convex programming based method to achieve the fairness and throughput objectives. We model TSCH MAC as a multichannel slotted aloha and analyse it for a schedule given by the 6top layer. Performance metrics like throughput, delay and energy spent per successful transmission are derived and validated through simulations. The proposed CBPF transmission scheme has been implemented in the IoT-LAB public testbed to evaluate its performance and to compare with the existing scheduling algorithms.

Generative models (GMs) such as Generative Adversary Network (GAN) and Variational Auto-Encoder (VAE) have thrived these years and achieved high quality results in generating new samples. Especially in Computer Vision, GMs have been used in image inpainting, denoising and completion, which can be treated as the inference from observed pixels to corrupted pixels. However, images are hierarchically structured which are quite different from many real-world inference scenarios with non-hierarchical features. These inference scenarios contain heterogeneous stochastic variables and irregular mutual dependences. Traditionally they are modeled by Bayesian Network (BN). However, the learning and inference of BN model are NP-hard thus the number of stochastic variables in BN is highly constrained. In this paper, we adapt typical GMs to enable heterogeneous learning and inference in polynomial time.We also propose an extended autoregressive (EAR) model and an EAR with adversary loss (EARA) model and give theoretical results on their effectiveness. Experiments on several BN datasets show that our proposed EAR model achieves the best performance in most cases compared to other GMs. Except for black box analysis, we've also done a serial of experiments on Markov border inference of GMs for white box analysis and give theoretical results.

We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.

As a new way of training generative models, Generative Adversarial Nets (GAN) that uses a discriminative model to guide the training of the generative model has enjoyed considerable success in generating real-valued data. However, it has limitations when the goal is for generating sequences of discrete tokens. A major reason lies in that the discrete outputs from the generative model make it difficult to pass the gradient update from the discriminative model to the generative model. Also, the discriminative model can only assess a complete sequence, while for a partially generated sequence, it is non-trivial to balance its current score and the future one once the entire sequence has been generated. In this paper, we propose a sequence generation framework, called SeqGAN, to solve the problems. Modeling the data generator as a stochastic policy in reinforcement learning (RL), SeqGAN bypasses the generator differentiation problem by directly performing gradient policy update. The RL reward signal comes from the GAN discriminator judged on a complete sequence, and is passed back to the intermediate state-action steps using Monte Carlo search. Extensive experiments on synthetic data and real-world tasks demonstrate significant improvements over strong baselines.

北京阿比特科技有限公司