亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Federated Learning (FL) has shown great potential as a privacy-preserving solution to learning from decentralized data that are only accessible to end devices (i.e., clients). In many scenarios however, a large proportion of the clients are probably in possession of low-quality data that are biased, noisy or even irrelevant. As a result, they could significantly slow down the convergence of the global model we aim to build and also compromise its quality. In light of this, we propose FedProf, a novel algorithm for optimizing FL under such circumstances without breaching data privacy. The key of our approach is a data representation profiling and matching scheme that uses the global model to dynamically profile data representations and allows for low-cost, lightweight representation matching. Based on the scheme we adaptively score each client and adjust its participation probability so as to mitigate the impact of low-value clients on the training process. We have conducted extensive experiments on public datasets using various FL settings. The results show that FedProf effectively reduces the number of communication rounds and overall time (up to 4.5x speedup) for the global model to converge and provides accuracy gain.

相關內容

聯邦學習(Federated Learning)是一種新興的人工智能基礎技術,在 2016 年由谷歌最先提出,原本用于解決安卓手機終端用戶在本地更新模型的問題,其設計目標是在保障大數據交換時的信息安全、保護終端數據和個人數據隱私、保證合法合規的前提下,在多參與方或多計算結點之間開展高效率的機器學習。其中,聯邦學習可使用的機器學習算法不局限于神經網絡,還包括隨機森林等重要算法。聯邦學習有望成為下一代人工智能協同算法和協作網絡的基礎。

Federated Learning (FL) enables distributed training by learners using local data, thereby enhancing privacy and reducing communication. However, it presents numerous challenges relating to the heterogeneity of the data distribution, device capabilities, and participant availability as deployments scale, which can impact both model convergence and bias. Existing FL schemes use random participant selection to improve fairness; however, this can result in inefficient use of resources and lower quality training. In this work, we systematically address the question of resource efficiency in FL, showing the benefits of intelligent participant selection, and incorporation of updates from straggling participants. We demonstrate how these factors enable resource efficiency while also improving trained model quality.

Traditional machine learning relies on a centralized data pipeline, i.e., data are provided to a central server for model training. In many applications, however, data are inherently fragmented. Such a decentralized nature of these databases presents the biggest challenge for collaboration: sending all decentralized datasets to a central server raises serious privacy concerns. Although there has been a joint effort in tackling such a critical issue by proposing privacy-preserving machine learning frameworks, such as federated learning, most state-of-the-art frameworks are built still in a centralized way, in which a central client is needed for collecting and distributing model information (instead of data itself) from every other client, leading to high communication pressure and high vulnerability when there exists a failure at or attack on the central client. Here we propose a principled decentralized federated learning algorithm (DeceFL), which does not require a central client and relies only on local information transmission between clients and their neighbors, representing a fully decentralized learning framework. It has been further proven that every client reaches the global minimum with zero performance gap and achieves the same convergence rate $O(1/T)$ (where $T$ is the number of iterations in gradient descent) as centralized federated learning when the loss function is smooth and strongly convex. Finally, the proposed algorithm has been applied to a number of applications to illustrate its effectiveness for both convex and nonconvex loss functions, demonstrating its applicability to a wide range of real-world medical and industrial applications.

Recently, lots of algorithms have been proposed for learning a fair classifier from centralized data. However, how to privately train a fair classifier on decentralized data has not been fully studied yet. In this work, we first propose a new theoretical framework, with which we analyze the value of federated learning in improving fairness. Our analysis reveals that federated learning can strictly boost model fairness compared with all non-federated algorithms. We then theoretically and empirically show that the performance tradeoff of FedAvg-based fair learning algorithms is strictly worse than that of a fair classifier trained on centralized data. To resolve this, we propose FedFB, a private fair learning algorithm on decentralized data with a modified FedAvg protocol. Our extensive experimental results show that FedFB significantly outperforms existing approaches, sometimes achieving a similar tradeoff as the one trained on centralized data.

Many researchers are trying to replace the aggregation server in federated learning with a blockchain system to achieve better privacy, robustness and scalability. In this case, clients will upload their updated models to the blockchain ledger, and use a smart contract on the blockchain system to perform model averaging. However, running machine learning applications on the blockchain is almost impossible because a blockchain system, which usually takes over half minute to generate a block, is extremely slow and unable to support machine learning applications. This paper proposes a completely new public blockchain architecture called DFL, which is specially optimized for distributed federated machine learning. This architecture inherits most traditional blockchain merits and achieves extremely high performance with low resource consumption by waiving global consensus. To characterize the performance and robustness of our architecture, we implement the architecture as a prototype and test it on a physical four-node network. To test more nodes and more complex situations, we build a simulator to simulate the network. The LeNet results indicate our system can reach over 90% accuracy for non-I.I.D. datasets even while facing model poisoning attacks, with the blockchain consuming less than 5% of hardware resources.

Noise robustness is essential for deploying automatic speech recognition (ASR) systems in real-world environments. One way to reduce the effect of noise interference is to employ a preprocessing module that conducts speech enhancement, and then feed the enhanced speech to an ASR backend. In this work, instead of suppressing background noise with a conventional cascaded pipeline, we employ a noise-robust representation learned by a refined self-supervised framework for noisy speech recognition. We propose to combine a reconstruction module with contrastive learning and perform multi-task continual pre-training on noisy data. The reconstruction module is used for auxiliary learning to improve the noise robustness of the learned representation and thus is not required during inference. Experiments demonstrate the effectiveness of our proposed method. Our model substantially reduces the word error rate (WER) for the synthesized noisy LibriSpeech test sets, and yields around 4.1/7.5% WER reduction on noisy clean/other test sets compared to data augmentation. For the real-world noisy speech from the CHiME-4 challenge (1-channel track), we have obtained the state of the art ASR performance without any denoising front-end. Moreover, we achieve comparable performance to the best supervised approach reported with only 16% of labeled data.

Federated learning (FL) is an emerging privacy-preserving paradigm, where a global model is trained at a central server while keeping client data local. However, FL can still indirectly leak private client information through model updates during training. Differential privacy (DP) can be employed to provide privacy guarantees within FL, typically at the cost of degraded final trained model. In this work, we consider a heterogeneous DP setup where clients are considered private by default, but some might choose to opt out of DP. We propose a new algorithm for federated learning with opt-out DP, referred to as \emph{FeO2}, along with a discussion on its advantages compared to the baselines of private and personalized FL algorithms. We prove that the server-side and client-side procedures in \emph{FeO2} are optimal for a simplified linear problem. We also analyze the incentive for opting out of DP in terms of performance gain. Through numerical experiments, we show that \emph{FeO2} provides up to $9.27\%$ performance gain in the global model compared to the baseline DP FL for the considered datasets. Additionally, we show a gap in the average performance of personalized models between non-private and private clients of up to $3.49\%$, empirically illustrating an incentive for clients to opt out.

Federated learning (FL) enables multiple clients to jointly train a global model under the coordination of a central server. Although FL is a privacy-aware paradigm, where raw data sharing is not required, recent studies have shown that FL might leak the private data of a client through the model parameters shared with the server or the other clients. In this paper, we present the HyFed framework, which enhances the privacy of FL while preserving the utility of the global model. HyFed provides developers with a generic API to develop federated, privacy-preserving algorithms. HyFed supports both simulation and federated operation modes and its source code is publicly available at //github.com/tum-aimed/hyfed.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Federated learning enables multiple parties to collaboratively train a machine learning model without communicating their local data. A key challenge in federated learning is to handle the heterogeneity of local data distribution across parties. Although many studies have been proposed to address this challenge, we find that they fail to achieve high performance in image datasets with deep learning models. In this paper, we propose MOON: model-contrastive federated learning. MOON is a simple and effective federated learning framework. The key idea of MOON is to utilize the similarity between model representations to correct the local training of individual parties, i.e., conducting contrastive learning in model-level. Our extensive experiments show that MOON significantly outperforms the other state-of-the-art federated learning algorithms on various image classification tasks.

Federated learning has been showing as a promising approach in paving the last mile of artificial intelligence, due to its great potential of solving the data isolation problem in large scale machine learning. Particularly, with consideration of the heterogeneity in practical edge computing systems, asynchronous edge-cloud collaboration based federated learning can further improve the learning efficiency by significantly reducing the straggler effect. Despite no raw data sharing, the open architecture and extensive collaborations of asynchronous federated learning (AFL) still give some malicious participants great opportunities to infer other parties' training data, thus leading to serious concerns of privacy. To achieve a rigorous privacy guarantee with high utility, we investigate to secure asynchronous edge-cloud collaborative federated learning with differential privacy, focusing on the impacts of differential privacy on model convergence of AFL. Formally, we give the first analysis on the model convergence of AFL under DP and propose a multi-stage adjustable private algorithm (MAPA) to improve the trade-off between model utility and privacy by dynamically adjusting both the noise scale and the learning rate. Through extensive simulations and real-world experiments with an edge-could testbed, we demonstrate that MAPA significantly improves both the model accuracy and convergence speed with sufficient privacy guarantee.

北京阿比特科技有限公司