This paper introduces a novel approach to enhance Large Language Models (LLMs) with expert knowledge to automate the analysis of corporate sustainability reports by benchmarking them against the Task Force for Climate-Related Financial Disclosures (TCFD) recommendations. Corporate sustainability reports are crucial in assessing organizations' environmental and social risks and impacts. However, analyzing these reports' vast amounts of information makes human analysis often too costly. As a result, only a few entities worldwide have the resources to analyze these reports, which could lead to a lack of transparency. While AI-powered tools can automatically analyze the data, they are prone to inaccuracies as they lack domain-specific expertise. This paper introduces a novel approach to enhance LLMs with expert knowledge to automate the analysis of corporate sustainability reports. We christen our tool CHATREPORT, and apply it in a first use case to assess corporate climate risk disclosures following the TCFD recommendations. CHATREPORT results from collaborating with experts in climate science, finance, economic policy, and computer science, demonstrating how domain experts can be involved in developing AI tools. We make our prompt templates, generated data, and scores available to the public to encourage transparency.
We propose Guided Positive Sampling Self-Supervised Learning (GPS-SSL), a general method to inject a priori knowledge into Self-Supervised Learning (SSL) positive samples selection. Current SSL methods leverage Data-Augmentations (DA) for generating positive samples and incorporate prior knowledge - an incorrect, or too weak DA will drastically reduce the quality of the learned representation. GPS-SSL proposes instead to design a metric space where Euclidean distances become a meaningful proxy for semantic relationship. In that space, it is now possible to generate positive samples from nearest neighbor sampling. Any prior knowledge can now be embedded into that metric space independently from the employed DA. From its simplicity, GPS-SSL is applicable to any SSL method, e.g. SimCLR or BYOL. A key benefit of GPS-SSL is in reducing the pressure in tailoring strong DAs. For example GPS-SSL reaches 85.58% on Cifar10 with weak DA while the baseline only reaches 37.51%. We therefore move a step forward towards the goal of making SSL less reliant on DA. We also show that even when using strong DAs, GPS-SSL outperforms the baselines on under-studied domains. We evaluate GPS-SSL along with multiple baseline SSL methods on numerous downstream datasets from different domains when the models use strong or minimal data augmentations. We hope that GPS-SSL will open new avenues in studying how to inject a priori knowledge into SSL in a principled manner.
Recently, the strong text creation ability of Large Language Models(LLMs) has given rise to many tools for assisting paper reading or even writing. However, the weak diagram analysis abilities of LLMs or Multimodal LLMs greatly limit their application scenarios, especially for scientific academic paper writing. In this work, towards a more versatile copilot for academic paper writing, we mainly focus on strengthening the multi-modal diagram analysis ability of Multimodal LLMs. By parsing Latex source files of high-quality papers, we carefully build a multi-modal diagram understanding dataset M-Paper. By aligning diagrams in the paper with related paragraphs, we construct professional diagram analysis samples for training and evaluation. M-Paper is the first dataset to support joint comprehension of multiple scientific diagrams, including figures and tables in the format of images or Latex codes. Besides, to better align the copilot with the user's intention, we introduce the `outline' as the control signal, which could be directly given by the user or revised based on auto-generated ones. Comprehensive experiments with a state-of-the-art Mumtimodal LLM demonstrate that training on our dataset shows stronger scientific diagram understanding performance, including diagram captioning, diagram analysis, and outline recommendation. The dataset, code, and model are available at //github.com/X-PLUG/mPLUG-DocOwl/tree/main/PaperOwl.
This work proposes a novel approach for non-deterministic extension of experimental data that considers structural model inadequacy for conditions other than the calibration scenario while simultaneously resolving any significant prior-data discrepancy with information extracted from flight measurements. This functionality is achieved through methodical utilization of model error emulators and Bayesian model averaging studies with available response data. The outlined approach does not require prior flight data availability and introduces straightforward mechanisms for their assimilation in future predictions. Application of the methodology is demonstrated herein by extending material performance data captured at the HyMETS facility to the MSL scenario, where the described process yields results that exhibit significantly improved capacity for predictive uncertainty quantification studies. This work also investigates limitations associated with straightforward uncertainty propagation procedures onto calibrated model predictions for the flight scenario and manages computational requirements with sensitivity analysis and surrogate modeling techniques.
Recently, a new paradigm, meta learning, has been widely applied to Deep Learning Recommendation Models (DLRM) and significantly improves statistical performance, especially in cold-start scenarios. However, the existing systems are not tailored for meta learning based DLRM models and have critical problems regarding efficiency in distributed training in the GPU cluster. It is because the conventional deep learning pipeline is not optimized for two task-specific datasets and two update loops in meta learning. This paper provides a high-performance framework for large-scale training for Optimization-based Meta DLRM models over the \textbf{G}PU cluster, namely \textbf{G}-Meta. Firstly, G-Meta utilizes both data parallelism and model parallelism with careful orchestration regarding computation and communication efficiency, to enable high-speed distributed training. Secondly, it proposes a Meta-IO pipeline for efficient data ingestion to alleviate the I/O bottleneck. Various experimental results show that G-Meta achieves notable training speed without loss of statistical performance. Since early 2022, G-Meta has been deployed in Alipay's core advertising and recommender system, shrinking the continuous delivery of models by four times. It also obtains 6.48\% improvement in Conversion Rate (CVR) and 1.06\% increase in CPM (Cost Per Mille) in Alipay's homepage display advertising, with the benefit of larger training samples and tasks.
This paper conducts a comprehensive benchmarking analysis of the performance of two innovative cryptographic schemes: Homomorphic Polynomial Public Key (HPPK)-Key Encapsulation Mechanism (KEM) and Digital Signature (DS), recently proposed by Kuang et al. These schemes represent a departure from traditional cryptographic paradigms, with HPPK leveraging the security of homomorphic symmetric encryption across two hidden rings without reliance on NP-hard problems. HPPK can be viewed as a specialized variant of Multivariate Public Key Cryptography (MPKC), intricately associated with two vector spaces: the polynomial vector space for the secret exchange and the multivariate vector space for randomized encapsulation. The unique integration of asymmetric, symmetric, and homomorphic cryptography within HPPK necessitates a careful examination of its performance metrics. This study focuses on the thorough benchmarking of HPPK KEM and DS across key cryptographic operations, encompassing key generation, encapsulation, decapsulation, signing, and verification. The results highlight the exceptional efficiency of HPPK, characterized by compact key sizes, cipher sizes, and signature sizes. The use of symmetric encryption in HPPK enhances its overall performance. Key findings underscore the outstanding performance of HPPK KEM and DS across various security levels, emphasizing their superiority in crucial cryptographic operations. This research positions HPPK as a promising and competitive solution for post-quantum cryptographic applications in a wide range of applications, including blockchain, digital currency, and Internet of Things (IoT) devices.
This paper introduces RAISE (Reasoning and Acting through Scratchpad and Examples), an advanced architecture enhancing the integration of Large Language Models (LLMs) like GPT-4 into conversational agents. RAISE, an enhancement of the ReAct framework, incorporates a dual-component memory system, mirroring human short-term and long-term memory, to maintain context and continuity in conversations. It entails a comprehensive agent construction scenario, including phases like Conversation Selection, Scene Extraction, CoT Completion, and Scene Augmentation, leading to the LLMs Training phase. This approach appears to enhance agent controllability and adaptability in complex, multi-turn dialogues. Our preliminary evaluations in a real estate sales context suggest that RAISE has some advantages over traditional agents, indicating its potential for broader applications. This work contributes to the AI field by providing a robust framework for developing more context-aware and versatile conversational agents.
Federated learning (FL) as one of the novel branches of distributed machine learning (ML), develops global models through a private procedure without direct access to local datasets. However, access to model updates (e.g. gradient updates in deep neural networks) transferred between clients and servers can reveal sensitive information to adversaries. Differential privacy (DP) offers a framework that gives a privacy guarantee by adding certain amounts of noise to parameters. This approach, although being effective in terms of privacy, adversely affects model performance due to noise involvement. Hence, it is always needed to find a balance between noise injection and the sacrificed accuracy. To address this challenge, we propose adaptive noise addition in FL which decides the value of injected noise based on features' relative importance. Here, we first propose two effective methods for prioritizing features in deep neural network models and then perturb models' weights based on this information. Specifically, we try to figure out whether the idea of adding more noise to less important parameters and less noise to more important parameters can effectively save the model accuracy while preserving privacy. Our experiments confirm this statement under some conditions. The amount of noise injected, the proportion of parameters involved, and the number of global iterations can significantly change the output. While a careful choice of parameters by considering the properties of datasets can improve privacy without intense loss of accuracy, a bad choice can make the model performance worse.
Following unprecedented success on the natural language tasks, Transformers have been successfully applied to several computer vision problems, achieving state-of-the-art results and prompting researchers to reconsider the supremacy of convolutional neural networks (CNNs) as {de facto} operators. Capitalizing on these advances in computer vision, the medical imaging field has also witnessed growing interest for Transformers that can capture global context compared to CNNs with local receptive fields. Inspired from this transition, in this survey, we attempt to provide a comprehensive review of the applications of Transformers in medical imaging covering various aspects, ranging from recently proposed architectural designs to unsolved issues. Specifically, we survey the use of Transformers in medical image segmentation, detection, classification, reconstruction, synthesis, registration, clinical report generation, and other tasks. In particular, for each of these applications, we develop taxonomy, identify application-specific challenges as well as provide insights to solve them, and highlight recent trends. Further, we provide a critical discussion of the field's current state as a whole, including the identification of key challenges, open problems, and outlining promising future directions. We hope this survey will ignite further interest in the community and provide researchers with an up-to-date reference regarding applications of Transformer models in medical imaging. Finally, to cope with the rapid development in this field, we intend to regularly update the relevant latest papers and their open-source implementations at \url{//github.com/fahadshamshad/awesome-transformers-in-medical-imaging}.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.