Simulated Tempering (ST) is an MCMC algorithm for complex target distributions that operates on a path between the target and a more amenable reference distribution. Crucially, if the reference enables i.i.d. sampling, ST is regenerative and can be parallelized across independent tours. However, the difficulty of tuning ST has hindered its widespread adoption. In this work, we develop a simple nonreversible ST (NRST) algorithm, a general theoretical analysis of ST, and an automated tuning procedure for ST. A core contribution that arises from the analysis is a novel performance metric -- Tour Effectiveness (TE) -- that controls the asymptotic variance of estimates from ST for bounded test functions. We use the TE to show that NRST dominates its reversible counterpart. We then develop an automated tuning procedure for NRST algorithms that targets the TE while minimizing computational cost. This procedure enables straightforward integration of NRST into existing probabilistic programming languages. We provide extensive experimental evidence that our tuning scheme improves the performance and robustness of NRST algorithms on a diverse set of probabilistic models.
The goal of this note is to explain the reconciliation problem for continuous-variable quantum key distribution protocols with a discrete modulation. Such modulation formats are attractive since they significantly simplify experimental implementations compared to protocols with a Gaussian modulation. Previous security proofs that relied crucially on the Gaussian distribution of the input states are rendered inapplicable, and new proofs based on the entropy accumulation theorem have emerged. Unfortunately, these proofs are not compatible with existing reconciliation procedures, and necessitate a reevaluation of the reconciliation problem. We argue that this problem is nontrivial and deserves further attention. In particular, assuming it can be solved with optimal efficiency leads to overly optimistic predictions for the performance of the key distribution protocol, in particular for long distances.
We address speech enhancement based on variational autoencoders, which involves learning a speech prior distribution in the time-frequency (TF) domain. A zero-mean complex-valued Gaussian distribution is usually assumed for the generative model, where the speech information is encoded in the variance as a function of a latent variable. In contrast to this commonly used approach, we propose a weighted variance generative model, where the contribution of each spectrogram time-frame in parameter learning is weighted. We impose a Gamma prior distribution on the weights, which would effectively lead to a Student's t-distribution instead of Gaussian for speech generative modeling. We develop efficient training and speech enhancement algorithms based on the proposed generative model. Our experimental results on spectrogram auto-encoding and speech enhancement demonstrate the effectiveness and robustness of the proposed approach compared to the standard unweighted variance model.
Gaussian approximations are routinely employed in Bayesian statistics to ease inference when the target posterior is intractable. Although these approximations are asymptotically justified by Bernstein-von Mises type results, in practice the expected Gaussian behavior may poorly represent the shape of the posterior, thus affecting approximation accuracy. Motivated by these considerations, we derive an improved class of closed-form approximations of posterior distributions which arise from a new treatment of a third-order version of the Laplace method yielding approximations in a tractable family of skew-symmetric distributions. Under general assumptions which account for misspecified models and non-i.i.d. settings, this family of approximations is shown to have a total variation distance from the target posterior whose rate of convergence improves by at least one order of magnitude the one established by the classical Bernstein-von Mises theorem. Specializing this result to the case of regular parametric models shows that the same improvement in approximation accuracy can be also derived for polynomially bounded posterior functionals. Unlike other higher-order approximations, our results prove that it is possible to derive closed-form and valid densities which are expected to provide, in practice, a more accurate, yet similarly-tractable, alternative to Gaussian approximations of the target posterior, while inheriting its limiting frequentist properties. We strengthen such arguments by developing a practical skew-modal approximation for both joint and marginal posteriors that achieves the same theoretical guarantees of its theoretical counterpart by replacing the unknown model parameters with the corresponding MAP estimate. Empirical studies confirm that our theoretical results closely match the remarkable performance observed in practice, even in finite, possibly small, sample regimes.
We present a streamlined and simplified exponential lower bound on the length of proofs in intuitionistic implicational logic, adapted to Gordeev and Haeusler's dag-like natural deduction.
A common approach to evaluating the significance of a collection of $p$-values combines them with a pooling function, in particular when the original data are not available. These pooled $p$-values convert a sample of $p$-values into a single number which behaves like a univariate $p$-value. To clarify discussion of these functions, a telescoping series of alternative hypotheses are introduced that communicate the strength and prevalence of non-null evidence in the $p$-values before general pooling formulae are discussed. A pattern noticed in the UMP pooled $p$-value for a particular alternative motivates the definition and discussion of central and marginal rejection levels at $\alpha$. It is proven that central rejection is always greater than or equal to marginal rejection, motivating a quotient to measure the balance between the two for pooled $p$-values. A combining function based on the $\chi^2_{\kappa}$ quantile transformation is proposed to control this quotient and shown to be robust to mis-specified parameters relative to the UMP. Different powers for different parameter settings motivate a map of plausible alternatives based on where this pooled $p$-value is minimized.
We describe Bayes factors functions based on z, t, $\chi^2$, and F statistics and the prior distributions used to define alternative hypotheses. The non-local alternative prior distributions are centered on standardized effects, which index the Bayes factor function. The prior densities include a dispersion parameter that models the variation of effect sizes across replicated experiments. We examine the convergence rates of Bayes factor functions under true null and true alternative hypotheses. Several examples illustrate the application of the Bayes factor functions to replicated experimental designs and compare the conclusions from these analyses to other default Bayes factor methods.
The multispecies Landau collision operator describes the two-particle, small scattering angle or grazing collisions in a plasma made up of different species of particles such as electrons and ions. Recently, a structure preserving deterministic particle method arXiv:1910.03080 has been developed for the single species spatially homogeneous Landau equation. This method relies on a regularization of the Landau collision operator so that an approximate solution, which is a linear combination of Dirac delta distributions, is well-defined. Based on a weak form of the regularized Landau equation, the time dependent locations of the Dirac delta functions satisfy a system of ordinary differential equations. In this work, we extend this particle method to the multispecies case, and examine its conservation of mass, momentum, and energy, and decay of entropy properties. We show that the equilibrium distribution of the regularized multispecies Landau equation is a Maxwellian distribution, and state a critical condition on the regularization parameters that guarantees a species independent equilibrium temperature. A convergence study comparing an exact multispecies BKW solution to the particle solution shows approximately 2nd order accuracy. Important physical properties such as conservation, decay of entropy, and equilibrium distribution of the particle method are demonstrated with several numerical examples.
Meta-analysis is the aggregation of data from multiple studies to find patterns across a broad range relating to a particular subject. It is becoming increasingly useful to apply meta-analysis to summarize these studies being done across various fields. In meta-analysis, it is common to use the mean and standard deviation from each study to compare for analysis. While many studies reported mean and standard deviation for their summary statistics, some report other values including the minimum, maximum, median, and first and third quantiles. Often, the quantiles and median are reported when the data is skewed and does not follow a normal distribution. In order to correctly summarize the data and draw conclusions from multiple studies, it is necessary to estimate the mean and standard deviation from each study, considering variation and skewness within each study. In past literature, methods have been proposed to estimate the mean and standard deviation, but do not consider negative values. Data that include negative values are common and would increase the accuracy and impact of the me-ta-analysis. We propose a method that implements a generalized Box-Cox transformation to estimate the mean and standard deviation accounting for such negative values while maintaining similar accuracy.
Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in physics and engineering. Many such problems have alternative formulations as integral equations that are mathematically more tractable than their PDE counterparts. However, the integral equation formulation poses a challenge in solving the dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and compute costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' The analysis of its parallel scalability applies generally to a class of existing methods that exploit the so-called strong admissibility. Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes data movement. Given a compression tolerance, our method constructs an approximate factorization of a discretized integral operator (dense matrix), which can be used to solve linear systems efficiently in parallel. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to demonstrate the performance of our implementation using the Julia language.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.