Humans understand sentences word-by-word, in the order that they hear them. This incrementality entails resolving temporary ambiguities about syntactic relationships. We investigate how humans process these syntactic ambiguities by correlating predictions from incremental generative dependency parsers with timecourse data from people undergoing functional neuroimaging while listening to an audiobook. In particular, we compare competing hypotheses regarding the number of developing syntactic analyses in play during word-by-word comprehension: one vs more than one. This comparison involves evaluating syntactic surprisal from a state-of-the-art dependency parser with LLM-adapted encodings against an existing fMRI dataset. In both English and Chinese data, we find evidence for multipath parsing. Brain regions associated with this multipath effect include bilateral superior temporal gyrus.
Urn models for innovation have proven to capture fundamental empirical laws shared by several real-world processes. The so-called urn model with triggering includes, as particular cases, an urn representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in Bayesian non-parametric inference. In this work, we leverage this connection to introduce a novel approach for quantifying closeness between symbolic sequences and test it within the framework of the authorship attribution problem. The method demonstrates high accuracy when compared to other state-of-the-art methods in different scenarios, featuring a substantial gain in computational efficiency and theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently established connection between urn models and non-parametric Bayesian inference can pave the way for designing more efficient inference methods. In particular, the hybrid approach that we propose allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems exhibiting complex correlation patterns and non-stationary dynamics.
Large Language Models (LLMs) have presented impressive performance across several transformative tasks. However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs, often riddled with numerous challenges such as frequent hardware failures, intricate parallelization strategies, and imbalanced resource utilization. In this paper, we present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme. Specifically, we investigate discrepancies between LLMs and prior task-specific Deep Learning (DL) workloads, explore resource utilization patterns, and identify the impact of various job failures. Our analysis summarizes hurdles we encountered and uncovers potential opportunities to optimize systems tailored for LLMs. Furthermore, we introduce our system efforts: (1) fault-tolerant pretraining, which enhances fault tolerance through LLM-involved failure diagnosis and automatic recovery. (2) decoupled scheduling for evaluation, which achieves timely performance feedback via trial decomposition and scheduling optimization.
Three approaches for adaptively tuning diagonal scale matrices for HMC are discussed and compared. The common practice of scaling according to estimated marginal standard deviations is taken as a benchmark. Scaling according to the mean log-target gradient (ISG), and a scaling method targeting that the frequency of when the underlying Hamiltonian dynamics crosses the respective medians should be uniform across dimensions, are taken as alternatives. Numerical studies suggest that the ISG method leads in many cases to more efficient sampling than the benchmark, in particular in cases with strong correlations or non-linear dependencies. The ISG method is also easy to implement, computationally cheap and would be relatively simple to include in automatically tuned codes as an alternative to the benchmark practice.
This article shows that PSPACE not equal EXP. A simple but novel proof technique has been used to separate these two classes. Whether an arbitrary Turing machine accepts an input when the running time is limited has been computed in this paper. Then, the limit goes to infinity. Thus, methods of the recursion theory can be applied to problems of computational complexity theory without violating the relativization barrier.
We consider linear bounded operators acting in Banach spaces with a basis, such operators can be represented by an infinite matrix. We prove that for an invertible operator there exists a sequence of invertible finite-dimensional operators so that the family of norms of their inverses is uniformly bounded. It leads to the fact that solutions of finite-dimensional equations converge to the solution of initial operator equation with infinite-dimensional matrix.
To date, most methods for simulating conditioned diffusions are limited to the Euclidean setting. The conditioned process can be constructed using a change of measure known as Doob's $h$-transform. The specific type of conditioning depends on a function $h$ which is typically unknown in closed form. To resolve this, we extend the notion of guided processes to a manifold $M$, where one replaces $h$ by a function based on the heat kernel on $M$. We consider the case of a Brownian motion with drift, constructed using the frame bundle of $M$, conditioned to hit a point $x_T$ at time $T$. We prove equivalence of the laws of the conditioned process and the guided process with a tractable Radon-Nikodym derivative. Subsequently, we show how one can obtain guided processes on any manifold $N$ that is diffeomorphic to $M$ without assuming knowledge of the heat kernel on $N$. We illustrate our results with numerical simulations and an example of parameter estimation where a diffusion process on the torus is observed discretely in time.
Recommendation algorithms play a pivotal role in shaping our media choices, which makes it crucial to comprehend their long-term impact on user behavior. These algorithms are often linked to two critical outcomes: homogenization, wherein users consume similar content despite disparate underlying preferences, and the filter bubble effect, wherein individuals with differing preferences only consume content aligned with their preferences (without much overlap with other users). Prior research assumes a trade-off between homogenization and filter bubble effects and then shows that personalized recommendations mitigate filter bubbles by fostering homogenization. However, because of this assumption of a tradeoff between these two effects, prior work cannot develop a more nuanced view of how recommendation systems may independently impact homogenization and filter bubble effects. We develop a more refined definition of homogenization and the filter bubble effect by decomposing them into two key metrics: how different the average consumption is between users (inter-user diversity) and how varied an individual's consumption is (intra-user diversity). We then use a novel agent-based simulation framework that enables a holistic view of the impact of recommendation systems on homogenization and filter bubble effects. Our simulations show that traditional recommendation algorithms (based on past behavior) mainly reduce filter bubbles by affecting inter-user diversity without significantly impacting intra-user diversity. Building on these findings, we introduce two new recommendation algorithms that take a more nuanced approach by accounting for both types of diversity.
Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied action with infinite agent. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
The present paper surveys neural approaches to conversational AI that have been developed in the last few years. We group conversational systems into three categories: (1) question answering agents, (2) task-oriented dialogue agents, and (3) chatbots. For each category, we present a review of state-of-the-art neural approaches, draw the connection between them and traditional approaches, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies.