亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a search and rescue game introduced recently by the first author. An immobile target or targets (for example, injured hikers) are hidden on a graph. The terrain is assumed to dangerous, so that when any given vertex of the graph is searched, there is a certain probability that the search will come to an end, otherwise with the complementary {\em success probability} the search can continue. A Searcher searches the graph with the aim of finding all the targets with maximum probability. Here, we focus on the game in the case that the graph is a cycle. In the case that there is only one target, we solve the game for equal success probabilities, and for a class of games with unequal success probabilities. For multiple targets and equal success probabilities, we give a solution for an adaptive Searcher and a solution in a special case for a non-adaptive Searcher. We also consider a continuous version of the model, giving a full solution for an adaptive Searcher and approximately optimal solutions in the non-adaptive case.

相關內容

互聯網

Levin Tree Search (LTS) is a search algorithm that makes use of a policy (a probability distribution over actions) and comes with a theoretical guarantee on the number of expansions before reaching a goal node, depending on the quality of the policy. This guarantee can be used as a loss function, which we call the LTS loss, to optimize neural networks representing the policy (LTS+NN). In this work we show that the neural network can be substituted with parameterized context models originating from the online compression literature (LTS+CM). We show that the LTS loss is convex under this new model, which allows for using standard convex optimization tools, and obtain convergence guarantees to the optimal parameters in an online setting for a given set of solution trajectories -- guarantees that cannot be provided for neural networks. The new LTS+CM algorithm compares favorably against LTS+NN on several benchmarks: Sokoban (Boxoban), The Witness, and the 24-Sliding Tile puzzle (STP). The difference is particularly large on STP, where LTS+NN fails to solve most of the test instances while LTS+CM solves each test instance in a fraction of a second. Furthermore, we show that LTS+CM is able to learn a policy that solves the Rubik's cube in only a few hundred expansions, which considerably improves upon previous machine learning techniques.

Large vision-language models (VLMs) such as GPT-4 have achieved unprecedented performance in response generation, especially with visual inputs, enabling more creative and adaptable interaction than large language models such as ChatGPT. Nonetheless, multimodal generation exacerbates safety concerns, since adversaries may successfully evade the entire system by subtly manipulating the most vulnerable modality (e.g., vision). To this end, we propose evaluating the robustness of open-source large VLMs in the most realistic and high-risk setting, where adversaries have only black-box system access and seek to deceive the model into returning the targeted responses. In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP, and then transfer these adversarial examples to other VLMs such as MiniGPT-4, LLaVA, UniDiffuser, BLIP-2, and Img2Prompt. In addition, we observe that black-box queries on these VLMs can further improve the effectiveness of targeted evasion, resulting in a surprisingly high success rate for generating targeted responses. Our findings provide a quantitative understanding regarding the adversarial vulnerability of large VLMs and call for a more thorough examination of their potential security flaws before deployment in practice. Code is at //github.com/yunqing-me/AttackVLM.

Internet technology has proven to be a vital contributor to many cutting-edge innovations that have given humans access to interact virtually with objects. Until now, numerous virtual systems had been developed for digital transformation to enable access to thousands of services and applications that range from virtual gaming to social networks. However, the majority of these systems lack to maintain consistency during interconnectivity and communication. To explore this discussion, in the recent past a new term, Metaverse has been introduced, which is the combination of meta and universe that describes a shared virtual environment, where a number of technologies, such as 4th and 5th generation technologies, VR, ML algorithms etc., work collectively to support each other for the sake of one objective, which is the virtual accessibility of objects via one network platform. With the development, integration, and virtualization of technologies, a lot of improvement in daily life applications is expected, but at the same time, there is a big challenge for the research community to secure this platform from external and external threats, because this technology is exposed to many cybersecurity attacks. Hence, it is imperative to systematically review and understand the taxonomy, applications, open security challenges, and future research directions of the emerging Metaverse technologies. In this paper, we have made useful efforts to present a comprehensive survey regarding Metaverse technology by taking into account the aforesaid parameters. Following this, in the initial phase, we explored the future of Metaverse in the presence of 4th and 5th generation technologies. Thereafter, we discussed the possible attacks to set a preface for the open security challenges. Based on that, we suggested potential research directions that could be beneficial to address these challenges cost-effectively.

Segment anything model (SAM) has presented impressive objectness identification capability with the idea of prompt learning and a new collected large-scale dataset. Given a prompt (e.g., points, bounding boxes, or masks) and an input image, SAM is able to generate valid segment masks for all objects indicated by the prompts, presenting high generalization across diverse scenarios and being a general method for zero-shot transfer to downstream vision tasks. Nevertheless, it remains unclear whether SAM may introduce errors in certain threatening scenarios. Clarifying this is of significant importance for applications that require robustness, such as autonomous vehicles. In this paper, we aim to study the testing-time robustness of SAM under adversarial scenarios and common corruptions. To this end, we first build a testing-time robustness evaluation benchmark for SAM by integrating existing public datasets. Second, we extend representative adversarial attacks against SAM and study the influence of different prompts on robustness. Third, we study the robustness of SAM under diverse corruption types by evaluating SAM on corrupted datasets with different prompts. With experiments conducted on SA-1B and KITTI datasets, we find that SAM exhibits remarkable robustness against various corruptions, except for blur-related corruption. Furthermore, SAM remains susceptible to adversarial attacks, particularly when subjected to PGD and BIM attacks. We think such a comprehensive study could highlight the importance of the robustness issues of SAM and trigger a series of new tasks for SAM as well as downstream vision tasks.

The forecasting and computation of the stability of chaotic systems from partial observations are tasks for which traditional equation-based methods may not be suitable. In this computational paper, we propose data-driven methods to (i) infer the dynamics of unobserved (hidden) chaotic variables (full-state reconstruction); (ii) time forecast the evolution of the full state; and (iii) infer the stability properties of the full state. The tasks are performed with long short-term memory (LSTM) networks, which are trained with observations (data) limited to only part of the state: (i) the low-to-high resolution LSTM (LH-LSTM), which takes partial observations as training input, and requires access to the full system state when computing the loss; and (ii) the physics-informed LSTM (PI-LSTM), which is designed to combine partial observations with the integral formulation of the dynamical system's evolution equations. First, we derive the Jacobian of the LSTMs. Second, we analyse a chaotic partial differential equation, the Kuramoto-Sivashinsky (KS), and the Lorenz-96 system. We show that the proposed networks can forecast the hidden variables, both time-accurately and statistically. The Lyapunov exponents and covariant Lyapunov vectors, which characterize the stability of the chaotic attractors, are correctly inferred from partial observations. Third, the PI-LSTM outperforms the LH-LSTM by successfully reconstructing the hidden chaotic dynamics when the input dimension is smaller or similar to the Kaplan-Yorke dimension of the attractor. This work opens new opportunities for reconstructing the full state, inferring hidden variables, and computing the stability of chaotic systems from partial data.

As a transformative general-purpose technology, AI has empowered various industries and will continue to shape our lives through ubiquitous applications. Despite the enormous benefits from wide-spread AI deployment, it is crucial to address associated downside risks and therefore ensure AI advances are safe, fair, responsible, and aligned with human values. To do so, we need to establish effective AI governance. In this work, we show that the strategic interaction between the regulatory agencies and AI firms has an intrinsic structure reminiscent of a Stackelberg game, which motivates us to propose a game-theoretic modeling framework for AI governance. In particular, we formulate such interaction as a Stackelberg game composed of a leader and a follower, which captures the underlying game structure compared to its simultaneous play counterparts. Furthermore, the choice of the leader naturally gives rise to two settings. And we demonstrate that our proposed model can serves as a unified AI governance framework from two aspects: firstly we can map one setting to the AI governance of civil domains and the other to the safety-critical and military domains, secondly, the two settings of governance could be chosen contingent on the capability of the intelligent systems. To the best of our knowledge, this work is the first to use game theory for analyzing and structuring AI governance. We also discuss promising directions and hope this can help stimulate research interest in this interdisciplinary area. On a high, we hope this work would contribute to develop a new paradigm for technology policy: the quantitative and AI-driven methods for the technology policy field, which holds significant promise for overcoming many shortcomings of existing qualitative approaches.

Games and simulators can be a valuable platform to execute complex multi-agent, multiplayer, imperfect information scenarios with significant parallels to military applications: multiple participants manage resources and make decisions that command assets to secure specific areas of a map or neutralize opposing forces. These characteristics have attracted the artificial intelligence (AI) community by supporting development of algorithms with complex benchmarks and the capability to rapidly iterate over new ideas. The success of artificial intelligence algorithms in real-time strategy games such as StarCraft II have also attracted the attention of the military research community aiming to explore similar techniques in military counterpart scenarios. Aiming to bridge the connection between games and military applications, this work discusses past and current efforts on how games and simulators, together with the artificial intelligence algorithms, have been adapted to simulate certain aspects of military missions and how they might impact the future battlefield. This paper also investigates how advances in virtual reality and visual augmentation systems open new possibilities in human interfaces with gaming platforms and their military parallels.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

Attention is an increasingly popular mechanism used in a wide range of neural architectures. Because of the fast-paced advances in this domain, a systematic overview of attention is still missing. In this article, we define a unified model for attention architectures for natural language processing, with a focus on architectures designed to work with vector representation of the textual data. We discuss the dimensions along which proposals differ, the possible uses of attention, and chart the major research activities and open challenges in the area.

Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

北京阿比特科技有限公司