亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a simple and general framework for nonparametric estimation of heterogeneous treatment effects under fairness constraints. Under standard regularity conditions, we show that the resulting estimators possess the double robustness property. We use this framework to characterize the trade-off between fairness and the maximum welfare achievable by the optimal policy. We evaluate the methods in a simulation study and illustrate them in a real-world case study.

相關內容

We present GenEFT: an effective theory framework for shedding light on the statics and dynamics of neural network generalization, and illustrate it with graph learning examples. We first investigate the generalization phase transition as data size increases, comparing experimental results with information-theory-based approximations. We find generalization in a Goldilocks zone where the decoder is neither too weak nor too powerful. We then introduce an effective theory for the dynamics of representation learning, where latent-space representations are modeled as interacting particles (repons), and find that it explains our experimentally observed phase transition between generalization and overfitting as encoder and decoder learning rates are scanned. This highlights the power of physics-inspired effective theories for bridging the gap between theoretical predictions and practice in machine learning.

We consider applications of neural networks in nonlinear system identification and formulate a hypothesis that adjusting general network structure by incorporating frequency information or other known orthogonal transform, should result in an efficient neural network retaining its universal properties. We show that such a structure is a universal approximator and that using any orthogonal transform in a proposed way implies regularization during training by adjusting the learning rate of each parameter individually. We empirically show in particular, that such a structure, using the Fourier transform, outperforms equivalent models without orthogonality support.

Natural policy gradient (NPG) methods with entropy regularization achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the \emph{persistence of excitation} condition, and achieves a fast convergence rate of $\tilde{O}(1/T)$ up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits \emph{linear convergence} up to a function approximation error.

A pivotal aspect in the design of neural networks lies in selecting activation functions, crucial for introducing nonlinear structures that capture intricate input-output patterns. While the effectiveness of adaptive or trainable activation functions has been studied in domains with ample data, like image classification problems, significant gaps persist in understanding their influence on classification accuracy and predictive uncertainty in settings characterized by limited data availability. This research aims to address these gaps by investigating the use of two types of adaptive activation functions. These functions incorporate shared and individual trainable parameters per hidden layer and are examined in three testbeds derived from additive manufacturing problems containing fewer than one hundred training instances. Our investigation reveals that adaptive activation functions, such as Exponential Linear Unit (ELU) and Softplus, with individual trainable parameters, result in accurate and confident prediction models that outperform fixed-shape activation functions and the less flexible method of using identical trainable activation functions in a hidden layer. Therefore, this work presents an elegant way of facilitating the design of adaptive neural networks in scientific and engineering problems.

This study investigates the asymptotic dynamics of alternating minimization applied to optimize a bilinear non-convex function with normally distributed covariates. We employ the replica method from statistical physics in a multi-step approach to precisely trace the algorithm's evolution. Our findings indicate that the dynamics can be described effectively by a two--dimensional discrete stochastic process, where each step depends on all previous time steps, revealing a memory dependency in the procedure. The theoretical framework developed in this work is broadly applicable for the analysis of various iterative algorithms, extending beyond the scope of alternating minimization.

We present a theory of ensemble diversity, explaining the nature of diversity for a wide range of supervised learning scenarios. This challenge has been referred to as the holy grail of ensemble learning, an open research issue for over 30 years. Our framework reveals that diversity is in fact a hidden dimension in the bias-variance decomposition of the ensemble loss. We prove a family of exact bias-variance-diversity decompositions, for a wide range of losses in both regression and classification, e.g., squared, cross-entropy, and Poisson losses. For losses where an additive bias-variance decomposition is not available (e.g., 0/1 loss) we present an alternative approach: quantifying the effects of diversity, which turn out to be dependent on the label distribution. Overall, we argue that diversity is a measure of model fit, in precisely the same sense as bias and variance, but accounting for statistical dependencies between ensemble members. Thus, we should not be maximising diversity as so many works aim to do -- instead, we have a bias/variance/diversity trade-off to manage.

We present a theoretical and empirical analysis of the adaptive entry point selection for graph-based approximate nearest neighbor search (ANNS). We introduce novel concepts: $b\textit{-monotonic path}$ and $B\textit{-MSNET}$, which better capture an actual graph in practical algorithms than existing concepts like MSNET. We prove that adaptive entry point selection offers better performance upper bound than the fixed central entry point under more general conditions than previous work. Empirically, we validate the method's effectiveness in accuracy, speed, and memory usage across various datasets, especially in challenging scenarios with out-of-distribution data and hard instances. Our comprehensive study provides deeper insights into optimizing entry points for graph-based ANNS for real-world high-dimensional data applications.

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司