亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present GenEFT: an effective theory framework for shedding light on the statics and dynamics of neural network generalization, and illustrate it with graph learning examples. We first investigate the generalization phase transition as data size increases, comparing experimental results with information-theory-based approximations. We find generalization in a Goldilocks zone where the decoder is neither too weak nor too powerful. We then introduce an effective theory for the dynamics of representation learning, where latent-space representations are modeled as interacting particles (repons), and find that it explains our experimentally observed phase transition between generalization and overfitting as encoder and decoder learning rates are scanned. This highlights the power of physics-inspired effective theories for bridging the gap between theoretical predictions and practice in machine learning.

相關內容

Machine ethics ensures ethical conduct in Artificial Intelligence (AI) models and agents. Examining real-life applications benefit learning practical ethics in many situations, offering valuable data to grasp the complexities of human ethics in diverse contexts. In this paper, we examine social media platforms for understanding real-life ethical scenarios and human moral judgments. We examine posts from a popular Reddit subreddit (i.e., a subcommunity) called r/AmITheAsshole, where authors and commenters share their moral judgments on who is blameworthy. We employ computational techniques to investigate the underlying reasoning influencing moral judgments. We focus on excerpts-which we term moral sparks-from original posts that commenters include to indicate what motivates their judgments. To this end, we examine how (1) events activating social commonsense and (2) linguistic signals affect moral sparks assignment and their subsequent judgments. By examining over 24 672 posts and 175988 comments, we find that event-related negative character traits (e.g., immature and rude) attract attention and stimulate blame, implying a dependent relationship between character traits and moral values. Specially, we focus on causal graph involving events (c-events) that activate social commonsense. We observe that c-events are perceived with varying levels of informativeness, influencing moral spark and judgment assignment in distinct ways. This observation is reinforced by examining linguistic features describing semantically similar c-events. Moreover, language influencing commenters' cognitive processes enhances the probability of an excerpt becoming a moral spark, while factual and concrete descriptions tend to inhibit this effect.

We present a general framework for applying learning algorithms and heuristical guidance to the verification of Markov decision processes (MDPs). The primary goal of our techniques is to improve performance by avoiding an exhaustive exploration of the state space, instead focussing on particularly relevant areas of the system, guided by heuristics. Our work builds on the previous results of Br{\'{a}}zdil et al., significantly extending it as well as refining several details and fixing errors. The presented framework focuses on probabilistic reachability, which is a core problem in verification, and is instantiated in two distinct scenarios. The first assumes that full knowledge of the MDP is available, in particular precise transition probabilities. It performs a heuristic-driven partial exploration of the model, yielding precise lower and upper bounds on the required probability. The second tackles the case where we may only sample the MDP without knowing the exact transition dynamics. Here, we obtain probabilistic guarantees, again in terms of both the lower and upper bounds, which provides efficient stopping criteria for the approximation. In particular, the latter is an extension of statistical model-checking (SMC) for unbounded properties in MDPs. In contrast to other related approaches, we do not restrict our attention to time-bounded (finite-horizon) or discounted properties, nor assume any particular structural properties of the MDP.

This paper introduces CognitiveOS, the first operating system designed for cognitive robots capable of functioning across diverse robotic platforms. CognitiveOS is structured as a multi-agent system comprising modules built upon a transformer architecture, facilitating communication through an internal monologue format. These modules collectively empower the robot to tackle intricate real-world tasks. The paper delineates the operational principles of the system along with descriptions of its nine distinct modules. The modular design endows the system with distinctive advantages over traditional end-to-end methodologies, notably in terms of adaptability and scalability. The system's modules are configurable, modifiable, or deactivatable depending on the task requirements, while new modules can be seamlessly integrated. This system serves as a foundational resource for researchers and developers in the cognitive robotics domain, alleviating the burden of constructing a cognitive robot system from scratch. Experimental findings demonstrate the system's advanced task comprehension and adaptability across varied tasks, robotic platforms, and module configurations, underscoring its potential for real-world applications. Moreover, in the category of Reasoning it outperformed CognitiveDog (by 15%) and RT2 (by 31%), achieving the highest to date rate of 77%. We provide a code repository and dataset for the replication of CognitiveOS: link will be provided in camera-ready submission.

Scientific data visualization plays a crucial role in research by enabling the direct display of complex information and assisting researchers in identifying implicit patterns. Despite its importance, the use of Large Language Models (LLMs) for scientific data visualization remains rather unexplored. In this study, we introduce MatPlotAgent, an efficient model-agnostic LLM agent framework designed to automate scientific data visualization tasks. Leveraging the capabilities of both code LLMs and multi-modal LLMs, MatPlotAgent consists of three core modules: query understanding, code generation with iterative debugging, and a visual feedback mechanism for error correction. To address the lack of benchmarks in this field, we present MatPlotBench, a high-quality benchmark consisting of 100 human-verified test cases. Additionally, we introduce a scoring approach that utilizes GPT-4V for automatic evaluation. Experimental results demonstrate that MatPlotAgent can improve the performance of various LLMs, including both commercial and open-source models. Furthermore, the proposed evaluation method shows a strong correlation with human-annotated scores.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications like recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarise existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. Additionally, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialisation of trustworthy GNNs.

Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Small data challenges have emerged in many learning problems, since the success of deep neural networks often relies on the availability of a huge amount of labeled data that is expensive to collect. To address it, many efforts have been made on training complex models with small data in an unsupervised and semi-supervised fashion. In this paper, we will review the recent progresses on these two major categories of methods. A wide spectrum of small data models will be categorized in a big picture, where we will show how they interplay with each other to motivate explorations of new ideas. We will review the criteria of learning the transformation equivariant, disentangled, self-supervised and semi-supervised representations, which underpin the foundations of recent developments. Many instantiations of unsupervised and semi-supervised generative models have been developed on the basis of these criteria, greatly expanding the territory of existing autoencoders, generative adversarial nets (GANs) and other deep networks by exploring the distribution of unlabeled data for more powerful representations. While we focus on the unsupervised and semi-supervised methods, we will also provide a broader review of other emerging topics, from unsupervised and semi-supervised domain adaptation to the fundamental roles of transformation equivariance and invariance in training a wide spectrum of deep networks. It is impossible for us to write an exclusive encyclopedia to include all related works. Instead, we aim at exploring the main ideas, principles and methods in this area to reveal where we are heading on the journey towards addressing the small data challenges in this big data era.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司