亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Symbolic regression is a nonlinear regression method which is commonly performed by an evolutionary computation method such as genetic programming. Quantification of uncertainty of regression models is important for the interpretation of models and for decision making. The linear approximation and so-called likelihood profiles are well-known possibilities for the calculation of confidence and prediction intervals for nonlinear regression models. These simple and effective techniques have been completely ignored so far in the genetic programming literature. In this work we describe the calculation of likelihood profiles in details and also provide some illustrative examples with models created with three different symbolic regression algorithms on two different datasets. The examples highlight the importance of the likelihood profiles to understand the limitations of symbolic regression models and to help the user taking an informed post-prediction decision.

相關內容

Model Predictive Control (MPC) is a well-established approach to solve infinite horizon optimal control problems. Since optimization over an infinite time horizon is generally infeasible, MPC determines a suboptimal feedback control by repeatedly solving finite time optimal control problems. Although MPC has been successfully used in many applications, applying MPC to large-scale systems -- arising, e.g., through discretization of partial differential equations -- requires the solution of high-dimensional optimal control problems and thus poses immense computational effort. We consider systems governed by parametrized parabolic partial differential equations and employ the reduced basis (RB) method as a low-dimensional surrogate model for the finite time optimal control problem. The reduced order optimal control serves as feedback control for the original large-scale system. We analyze the proposed RB-MPC approach by first developing a posteriori error bounds for the errors in the optimal control and associated cost functional. These bounds can be evaluated efficiently in an offline-online computational procedure and allow us to guarantee asymptotic stability of the closed-loop system using the RB-MPC approach in several practical scenarios. We also propose an adaptive strategy to choose the prediction horizon of the finite time optimal control problem. Numerical results are presented to illustrate the theoretical properties of our approach.

In this work, we present a method for synthetic CT (sCT) generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. We propose a loss function that favors a spatially sparse region in the image. We harness the ability of a multi-task network to produce correlated outputs as a framework to enable localisation of region of interest (RoI) via classification, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task. We demonstrate how the multi-task network with RoI focused loss offers an advantage over other configurations of the network to achieve higher accuracy of performance. This is relevant to sCT where failure to accurately estimate high Hounsfield Unit values of bone could lead to impaired accuracy in clinical applications. We compare the dose calculation maps from the proposed sCT and the real CT in a radiation therapy treatment planning setup.

This paper presents a computationally feasible method to compute rigorous bounds on the interval-generalisation of regression analysis to account for epistemic uncertainty in the output variables. The new iterative method uses machine learning algorithms to fit an imprecise regression model to data that consist of intervals rather than point values. The method is based on a single-layer interval neural network which can be trained to produce an interval prediction. It seeks parameters for the optimal model that minimizes the mean squared error between the actual and predicted interval values of the dependent variable using a first-order gradient-based optimization and interval analysis computations to model the measurement imprecision of the data. An additional extension to a multi-layer neural network is also presented. We consider the explanatory variables to be precise point values, but the measured dependent values are characterized by interval bounds without any probabilistic information. The proposed iterative method estimates the lower and upper bounds of the expectation region, which is an envelope of all possible precise regression lines obtained by ordinary regression analysis based on any configuration of real-valued points from the respective y-intervals and their x-values.

Fitting a polynomial to observed data is an ubiquitous task in many signal processing and machine learning tasks, such as interpolation and prediction. In that context, input and output pairs are available and the goal is to find the coefficients of the polynomial. However, in many applications, the input may be partially known or not known at all, rendering conventional regression approaches not applicable. In this paper, we formally state the (potentially partial) blind regression problem, illustrate some of its theoretical properties, and propose algorithmic approaches to solve it. As a case-study, we apply our methods to a jitter-correction problem and corroborate its performance.

Robots that interact with humans in a physical space or application need to think about the person's posture, which typically comes from visual sensors like cameras and infra-red. Artificial intelligence and machine learning algorithms use information from these sensors either directly or after some level of symbolic abstraction, and the latter usually partitions the range of observed values to discretize the continuous signal data. Although these representations have been effective in a variety of algorithms with respect to accuracy and task completion, the underlying models are rarely interpretable, which also makes their outputs more difficult to explain to people who request them. Instead of focusing on the possible sensor values that are familiar to a machine, we introduce a qualitative spatial reasoning approach that describes the human posture in terms that are more familiar to people. This paper explores the derivation of our symbolic representation at two levels of detail and its preliminary use as features for interpretable activity recognition.

Reliably estimating the uncertainty of a prediction throughout the model lifecycle is crucial in many safety-critical applications. The most common way to measure this uncertainty is via the predicted confidence. While this tends to work well for in-domain samples, these estimates are unreliable under domain drift. Alternatively, a bias-variance decomposition allows to directly measure the predictive uncertainty across the entire input space. But, such a decomposition for proper scores does not exist in current literature, and for exponential families it is convoluted. In this work, we introduce a general bias-variance decomposition for proper scores and reformulate the exponential family case, giving rise to the Bregman Information as the variance term in both cases. This allows us to prove that the Bregman Information for classification measures the uncertainty in the logit space. We showcase the practical relevance of this decomposition on two downstream tasks. First, we show how to construct confidence intervals for predictions on the instance-level based on the Bregman Information. Second, we demonstrate how different approximations of the instance-level Bregman Information allow reliable out-of-distribution detection for all degrees of domain drift.

A difficulty in MSE estimation occurs because we do not specify a full distribution for the survey weights. This obfuscates the use of fully parametric bootstrap procedures. To overcome this challenge, we develop a novel MSE estimator. We estimate the leading term in the MSE, which is the MSE of the best predictor (constructed with the true parameters), using the same simulated samples used to construct the basic predictor. We then exploit the asymptotic normal distribution of the parameter estimators to estimate the second term in the MSE, which reflects variability in the estimated parameters. We incorporate a correction for the bias of the estimator of the leading term without the use of computationally intensive double-bootstrap procedures. We further develop calibrated prediction intervals that rely less on normal theory than standard prediction intervals. We empirically demonstrate the validity of the proposed procedures through extensive simulation studies. We apply the methods to predict several functions of sheet and rill erosion for Iowa counties using data from a complex agricultural survey.

Feature selection plays a vital role in promoting the classifier's performance. However, current methods ineffectively distinguish the complex interaction in the selected features. To further remove these hidden negative interactions, we propose a GA-like dynamic probability (GADP) method with mutual information which has a two-layer structure. The first layer applies the mutual information method to obtain a primary feature subset. The GA-like dynamic probability algorithm, as the second layer, mines more supportive features based on the former candidate features. Essentially, the GA-like method is one of the population-based algorithms so its work mechanism is similar to the GA. Different from the popular works which frequently focus on improving GA's operators for enhancing the search ability and lowering the converge time, we boldly abandon GA's operators and employ the dynamic probability that relies on the performance of each chromosome to determine feature selection in the new generation. The dynamic probability mechanism significantly reduces the parameter number in GA that making it easy to use. As each gene's probability is independent, the chromosome variety in GADP is more notable than in traditional GA, which ensures GADP has a wider search space and selects relevant features more effectively and accurately. To verify our method's superiority, we evaluate our method under multiple conditions on 15 datasets. The results demonstrate the outperformance of the proposed method. Generally, it has the best accuracy. Further, we also compare the proposed model to the popular heuristic methods like POS, FPA, and WOA. Our model still owns advantages over them.

Many real-world problems can be naturally described by mathematical formulas. The task of finding formulas from a set of observed inputs and outputs is called symbolic regression. Recently, neural networks have been applied to symbolic regression, among which the transformer-based ones seem to be the most promising. After training the transformer on a large number of formulas (in the order of days), the actual inference, i.e., finding a formula for new, unseen data, is very fast (in the order of seconds). This is considerably faster than state-of-the-art evolutionary methods. The main drawback of transformers is that they generate formulas without numerical constants, which have to be optimized separately, so yielding suboptimal results. We propose a transformer-based approach called SymFormer, which predicts the formula by outputting the individual symbols and the corresponding constants simultaneously. This leads to better performance in terms of fitting the available data. In addition, the constants provided by SymFormer serve as a good starting point for subsequent tuning via gradient descent to further improve the performance. We show on a set of benchmarks that SymFormer outperforms two state-of-the-art methods while having faster inference.

Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.

北京阿比特科技有限公司