亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Equilibrium G/M/1-FIFO waiting times are exponentially distributed, as first proved by Smith (1953). For other client-sorting policies, such generality is not feasible. Assume that interarrival times are constant. Symbolics for the D/M/1-LIFO density are completely known; numerics for D/M/1-SIRO arise via an unpublished recursion due to Burke (1967). Consider a weighted sum of two costs, one from keeping clients waiting for treatment and the other from having the server idle. With this in mind, what is the optimal interarrival time and how does this depend on the choice of policy?

相關內容

In this work, we consider the numerical computation of ground states and dynamics of single-component Bose-Einstein condensates (BECs). The corresponding models are spatially discretized with a multiscale finite element approach known as Localized Orthogonal Decomposition (LOD). Despite the outstanding approximation properties of such a discretization in the context of BECs, taking full advantage of it without creating severe computational bottlenecks can be tricky. In this paper, we therefore present two fully-discrete numerical approaches that are formulated in such a way that they take special account of the structure of the LOD spaces. One approach is devoted to the computation of ground states and another one for the computation of dynamics. A central focus of this paper is also the discussion of implementation aspects that are very important for the practical realization of the methods. In particular, we discuss the use of suitable data structures that keep the memory costs economical. The paper concludes with various numerical experiments in 1d, 2d and 3d that investigate convergence rates and approximation properties of the methods and which demonstrate their performance and computational efficiency, also in comparison to spectral and standard finite element approaches.

Counterfactual reasoning from logged data has become increasingly important for many applications such as web advertising or healthcare. In this paper, we address the problem of learning stochastic policies with continuous actions from the viewpoint of counterfactual risk minimization (CRM). While the CRM framework is appealing and well studied for discrete actions, the continuous action case raises new challenges about modelization, optimization, and~offline model selection with real data which turns out to be particularly challenging. Our paper contributes to these three aspects of the CRM estimation pipeline. First, we introduce a modelling strategy based on a joint kernel embedding of contexts and actions, which overcomes the shortcomings of previous discretization approaches. Second, we empirically show that the optimization aspect of counterfactual learning is important, and we demonstrate the benefits of proximal point algorithms and differentiable estimators. Finally, we propose an evaluation protocol for offline policies in real-world logged systems, which is challenging since policies cannot be replayed on test data, and we release a new large-scale dataset along with multiple synthetic, yet realistic, evaluation setups.

Transaction fee markets are essential components of blockchain economies, as they resolve the inherent scarcity in the number of transactions that can be added to each block. In early blockchain protocols, this scarcity was resolved through a first-price auction in which users were forced to guess appropriate bids from recent blockchain data. Ethereum's EIP-1559 fee market reform streamlines this process through the use of a base fee that is increased (or decreased) whenever a block exceeds (or fails to meet) a specified target block size. Previous work has found that the EIP-1559 mechanism may lead to a base fee process that is inherently chaotic, in which case the base fee does not converge to a fixed point even under ideal conditions. However, the impact of this chaotic behavior on the fee market's main design goal -- blocks whose long-term average size equals the target -- has not previously been explored. As our main contribution, we derive near-optimal upper and lower bounds for the time-average block size in the EIP-1559 mechanism despite its possibly chaotic evolution. Our lower bound is equal to the target utilization level whereas our upper bound is approximately 6% higher than optimal. Empirical evidence is shown in great agreement with these theoretical predictions. Specifically, the historical average was approximately 2.9% larger than the target rage under Proof-of-Work and decreased to approximately 2.0% after Ethereum's transition to Proof-of-Stake. We also find that an approximate version of EIP-1559 achieves optimality even in the absence of convergence.

We study the problem of sharing as many branching conditions of a given forest classifier or regressor as possible while keeping classification performance. As a constraint for preventing from accuracy degradation, we first consider the one that the decision paths of all the given feature vectors must not change. For a branching condition that a value of a certain feature is at most a given threshold, the set of values satisfying such constraint can be represented as an interval. Thus, the problem is reduced to the problem of finding the minimum set intersecting all the constraint-satisfying intervals for each set of branching conditions on the same feature. We propose an algorithm for the original problem using an algorithm solving this problem efficiently. The constraint is relaxed later to promote further sharing of branching conditions by allowing decision path change of a certain ratio of the given feature vectors or allowing a certain number of non-intersected constraint-satisfying intervals. We also extended our algorithm for both the relaxations. The effectiveness of our method is demonstrated through comprehensive experiments using 21 datasets (13 classification and 8 regression datasets in UCI machine learning repository) and 4 classifiers/regressors (random forest, extremely randomized trees, AdaBoost and gradient boosting).

Explainability has become a central requirement for the development, deployment, and adoption of machine learning (ML) models and we are yet to understand what explanation methods can and cannot do. Several factors such as data, model prediction, hyperparameters used in training the model, and random initialization can all influence downstream explanations. While previous work empirically hinted that explanations (E) may have little relationship with the prediction (Y), there is a lack of conclusive study to quantify this relationship. Our work borrows tools from causal inference to systematically assay this relationship. More specifically, we measure the relationship between E and Y by measuring the treatment effect when intervening on their causal ancestors (hyperparameters) (inputs to generate saliency-based Es or Ys). We discover that Y's relative direct influence on E follows an odd pattern; the influence is higher in the lowest-performing models than in mid-performing models, and it then decreases in the top-performing models. We believe our work is a promising first step towards providing better guidance for practitioners who can make more informed decisions in utilizing these explanations by knowing what factors are at play and how they relate to their end task.

In this paper, we tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing FL algorithms are applicable. In particular, the objective has the form of $\mathbb E_{z\sim S_1} f(\mathbb E_{z'\sim S_2} \ell(w; z, z'))$, where two sets of data $S_1, S_2$ are distributed over multiple machines, $\ell(\cdot)$ is a pairwise loss that only depends on the prediction outputs of the input data pairs $(z, z')$, and $f(\cdot)$ is possibly a non-linear non-convex function. This problem has important applications in machine learning, e.g., AUROC maximization with a pairwise loss, and partial AUROC maximization with a compositional loss. The challenges for designing an FL algorithm lie in the non-decomposability of the objective over multiple machines and the interdependency between different machines. To address the challenges, we propose an active-passive decomposition framework that decouples the gradient's components with two types, namely active parts and passive parts, where the active parts depend on local data that are computed with the local model and the passive parts depend on other machines that are communicated/computed based on historical models and samples. Under this framework, we develop two provable FL algorithms (FeDXL) for handling linear and nonlinear $f$, respectively, based on federated averaging and merging. We develop a novel theoretical analysis to combat the latency of the passive parts and the interdependency between the local model parameters and the involved data for computing local gradient estimators. We establish both iteration and communication complexities and show that using the historical samples and models for computing the passive parts do not degrade the complexities. We conduct empirical studies of FeDXL for deep AUROC and partial AUROC maximization, and demonstrate their performance compared with several baselines.

We study a class of dynamical systems modelled as Markov chains that admit an invariant distribution via the corresponding transfer, or Koopman, operator. While data-driven algorithms to reconstruct such operators are well known, their relationship with statistical learning is largely unexplored. We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system. We consider the restriction of this operator to a reproducing kernel Hilbert space and introduce a notion of risk, from which different estimators naturally arise. We link the risk with the estimation of the spectral decomposition of the Koopman operator. These observations motivate a reduced-rank operator regression (RRR) estimator. We derive learning bounds for the proposed estimator, holding both in i.i.d. and non i.i.d. settings, the latter in terms of mixing coefficients. Our results suggest RRR might be beneficial over other widely used estimators as confirmed in numerical experiments both for forecasting and mode decomposition.

This interactive paper aims to provide an intuitive understanding of the self-calibrating interface paradigm. Under this paradigm, you can choose how to use an interface which can adapt to your preferences on the fly. We introduce a PIN entering task and gradually release constraints, moving from a pre-calibrated interface to a self-calibrating interface while increasing the complexity of input modalities from buttons, to points on a map, to sketches, and finally to spoken words. This is not a traditional research paper with a hypothesis and experimental results to support claims; the research supporting this work has already been done and we refer to it extensively in the later sections. Instead, our aim is to walk you through an intriguing interaction paradigm in small logical steps with supporting illustrations, interactive demonstrations, and videos to reinforce your learning. We designed this paper for the enjoyments of curious minds of any backgrounds, it is written in plain English and no prior knowledge is necessary. All demos are available online at openvault.jgrizou.com and linked individually in the paper.

Traffic signal control is an important problem in urban mobility with a significant potential of economic and environmental impact. While there is a growing interest in Reinforcement Learning (RL) for traffic signal control, the work so far has focussed on learning through simulations which could lead to inaccuracies due to simplifying assumptions. Instead, real experience data on traffic is available and could be exploited at minimal costs. Recent progress in offline or batch RL has enabled just that. Model-based offline RL methods, in particular, have been shown to generalize from the experience data much better than others. We build a model-based learning framework which infers a Markov Decision Process (MDP) from a dataset collected using a cyclic traffic signal control policy that is both commonplace and easy to gather. The MDP is built with pessimistic costs to manage out-of-distribution scenarios using an adaptive shaping of rewards which is shown to provide better regularization compared to the prior related work in addition to being PAC-optimal. Our model is evaluated on a complex signalized roundabout showing that it is possible to build highly performant traffic control policies in a data efficient manner.

We propose a monitoring strategy for efficient and robust estimation of disease prevalence and case numbers within closed and enumerated populations such as schools, workplaces, or retirement communities. The proposed design relies largely on voluntary testing, notoriously biased (e.g., in the case of COVID-19) due to non-representative sampling. The approach yields unbiased and comparatively precise estimates with no assumptions about factors underlying selection of individuals for voluntary testing, building on the strength of what can be a small random sampling component. This component unlocks a previously proposed "anchor stream" estimator, a well-calibrated alternative to classical capture-recapture (CRC) estimators based on two data streams. We show here that this estimator is equivalent to a direct standardization based on "capture", i.e., selection (or not) by the voluntary testing program, made possible by means of a key parameter identified by design. This equivalency simultaneously allows for novel two-stream CRC-like estimation of general means (e.g., of continuous variables such as antibody levels or biomarkers). For inference, we propose adaptations of a Bayesian credible interval when estimating case counts and bootstrapping when estimating means of continuous variables. We use simulations to demonstrate significant precision benefits relative to random sampling alone.

北京阿比特科技有限公司