亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous vehicles rely on accurate trajectory prediction to inform decision-making processes related to navigation and collision avoidance. However, current trajectory prediction models show signs of overfitting, which may lead to unsafe or suboptimal behavior. To address these challenges, this paper presents a comprehensive framework that categorizes and assesses the definitions and strategies used in the literature on evaluating and improving the robustness of trajectory prediction models. This involves a detailed exploration of various approaches, including data slicing methods, perturbation techniques, model architecture changes, and post-training adjustments. In the literature, we see many promising methods for increasing robustness, which are necessary for safe and reliable autonomous driving.

相關內容

We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.

The subject of this work is an adaptive stochastic Galerkin finite element method for parametric or random elliptic partial differential equations, which generates sparse product polynomial expansions with respect to the parametric variables of solutions. For the corresponding spatial approximations, an independently refined finite element mesh is used for each polynomial coefficient. The method relies on multilevel expansions of input random fields and achieves error reduction with uniform rate. In particular, the saturation property for the refinement process is ensured by the algorithm. The results are illustrated by numerical experiments, including cases with random fields of low regularity.

We propose a material design method via gradient-based optimization on compositions, overcoming the limitations of traditional methods: exhaustive database searches and conditional generation models. It optimizes inputs via backpropagation, aligning the model's output closely with the target property and facilitating the discovery of unlisted materials and precise property determination. Our method is also capable of adaptive optimization under new conditions without retraining. Applying to exploring high-Tc superconductors, we identified potential compositions beyond existing databases and discovered new hydrogen superconductors via conditional optimization. This method is versatile and significantly advances material design by enabling efficient, extensive searches and adaptability to new constraints.

Lattices are architected metamaterials whose properties strongly depend on their geometrical design. The analogy between lattices and graphs enables the use of graph neural networks (GNNs) as a faster surrogate model compared to traditional methods such as finite element modelling. In this work, we generate a big dataset of structure-property relationships for strut-based lattices. The dataset is made available to the community which can fuel the development of methods anchored in physical principles for the fitting of fourth-order tensors. In addition, we present a higher-order GNN model trained on this dataset. The key features of the model are (i) SE(3) equivariance, and (ii) consistency with the thermodynamic law of conservation of energy. We compare the model to non-equivariant models based on a number of error metrics and demonstrate its benefits in terms of predictive performance and reduced training requirements. Finally, we demonstrate an example application of the model to an architected material design task. The methods which we developed are applicable to fourth-order tensors beyond elasticity such as piezo-optical tensor etc.

We integrate machine learning approaches with nonlinear time series analysis, specifically utilizing recurrence measures to classify various dynamical states emerging from time series. We implement three machine learning algorithms Logistic Regression, Random Forest, and Support Vector Machine for this study. The input features are derived from the recurrence quantification of nonlinear time series and characteristic measures of the corresponding recurrence networks. For training and testing we generate synthetic data from standard nonlinear dynamical systems and evaluate the efficiency and performance of the machine learning algorithms in classifying time series into periodic, chaotic, hyper-chaotic, or noisy categories. Additionally, we explore the significance of input features in the classification scheme and find that the features quantifying the density of recurrence points are the most relevant. Furthermore, we illustrate how the trained algorithms can successfully predict the dynamical states of two variable stars, SX Her and AC Her from the data of their light curves.

Intelligent tutoring systems optimize the selection and timing of learning materials to enhance understanding and long-term retention. This requires estimates of both the learner's progress (''knowledge tracing''; KT), and the prerequisite structure of the learning domain (''knowledge mapping''). While recent deep learning models achieve high KT accuracy, they do so at the expense of the interpretability of psychologically-inspired models. In this work, we present a solution to this trade-off. PSI-KT is a hierarchical generative approach that explicitly models how both individual cognitive traits and the prerequisite structure of knowledge influence learning dynamics, thus achieving interpretability by design. Moreover, by using scalable Bayesian inference, PSI-KT targets the real-world need for efficient personalization even with a growing body of learners and learning histories. Evaluated on three datasets from online learning platforms, PSI-KT achieves superior multi-step predictive accuracy and scalable inference in continual-learning settings, all while providing interpretable representations of learner-specific traits and the prerequisite structure of knowledge that causally supports learning. In sum, predictive, scalable and interpretable knowledge tracing with solid knowledge mapping lays a key foundation for effective personalized learning to make education accessible to a broad, global audience.

Global variance-based reliability sensitivity indices arise from a variance decomposition of the indicator function describing the failure event. The first-order indices reflect the main effect of each variable on the variance of the failure event and can be used for variable prioritization; the total-effect indices represent the total effect of each variable, including its interaction with other variables, and can be used for variable fixing. This contribution derives expressions for the variance-based reliability indices of systems with multiple failure modes that are based on the first-order reliability method (FORM). The derived expressions are a function of the FORM results and, hence, do not require additional expensive model evaluations. They do involve the evaluation of multinormal integrals, for which effective solutions are available. We demonstrate that the derived expressions enable an accurate estimation of variance-based reliability sensitivities for general system problems to which FORM is applicable.

The first-principles-based effective Hamiltonian is widely used to predict and simulate the properties of ferroelectrics and relaxor ferroelectrics. However, the parametrization method of the effective Hamiltonian is complicated and hardly can resolve the systems with complex interactions and/or complex components. Here, we developed an on-the-fly active machine learning approach to parametrize the effective Hamiltonian based on Bayesian linear regression. The parametrization is completed in molecular dynamics simulations, with the energy, forces and stress predicted at each step along with their uncertainties. First-principles calculations are executed when the uncertainties are large to retrain the parameters. This approach provides a universal and automatic way to compute the effective Hamiltonian parameters for any considered systems including complex systems which previous methods can not handle. The form of the effective Hamiltonian is also revised to include some complex terms. BaTiO3, CsPbI3 and SrTiO3/PbTiO3 surface are taken as examples to show the accurateness of this approach comparing with conventional first-principles parametrization method.

The direct parametrisation method for invariant manifold is a model-order reduction technique that can be applied to nonlinear systems described by PDEs and discretised e.g. with a finite element procedure in order to derive efficient reduced-order models (ROMs). In nonlinear vibrations, it has already been applied to autonomous and non-autonomous problems to propose ROMs that can compute backbone and frequency-response curves of structures with geometric nonlinearity. While previous developments used a first-order expansion to cope with the non-autonomous term, this assumption is here relaxed by proposing a different treatment. The key idea is to enlarge the dimension of the parametrising coordinates with additional entries related to the forcing. A new algorithm is derived with this starting assumption and, as a key consequence, the resonance relationships appearing through the homological equations involve multiple occurrences of the forcing frequency, showing that with this new development, ROMs for systems exhibiting a superharmonic resonance, can be derived. The method is implemented and validated on academic test cases involving beams and arches. It is numerically demonstrated that the method generates efficient ROMs for problems involving 3:1 and 2:1 superharmonic resonances, as well as converged results for systems where the first-order truncation on the non-autonomous term showed a clear limitation.

The use of discretized variables in the development of prediction models is a common practice, in part because the decision-making process is more natural when it is based on rules created from segmented models. Although this practice is perhaps more common in medicine, it is extensible to any area of knowledge where a predictive model helps in decision-making. Therefore, providing researchers with a useful and valid categorization method could be a relevant issue when developing prediction models. In this paper, we propose a new general methodology that can be applied to categorize a predictor variable in any regression model where the response variable belongs to the exponential family distribution. Furthermore, it can be applied in any multivariate context, allowing to categorize more than one continuous covariate simultaneously. In addition, a computationally very efficient method is proposed to obtain the optimal number of categories, based on a pseudo-BIC proposal. Several simulation studies have been conducted in which the efficiency of the method with respect to both the location and the number of estimated cut-off points is shown. Finally, the categorization proposal has been applied to a real data set of 543 patients with chronic obstructive pulmonary disease from Galdakao Hospital's five outpatient respiratory clinics, who were followed up for 10 years. We applied the proposed methodology to jointly categorize the continuous variables six-minute walking test and forced expiratory volume in one second in a multiple Poisson generalized additive model for the response variable rate of the number of hospital admissions by years of follow-up. The location and number of cut-off points obtained were clinically validated as being in line with the categorizations used in the literature.

北京阿比特科技有限公司