亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The complexity of a well-quasi-order (wqo) can be measured through three classical ordinal invariants: the width as a measure of antichains, the height as a measure of chains, and the maximal order type as a measure of bad sequences. This article considers the "finitary powerset" construction: the collection Pf(X) of finite subsets of a wqo X ordered with the Hoare embedding relation remains a wqo. The width, height and maximal order type of Pf(X) cannot be expressed as a function of the invariants of X, and we provide tight upper and lower bounds for the three invariants. The article also identifies an algebra of well-behaved wqos, that include finitary powersets as well as other more classical constructions, and for which the ordinal invariants can be computed compositionnally. This relies on a new ordinal invariant called the approximated maximal order type.

相關內容

We introduce the notion of a Morse sequence, which provides a simple and effective approach to discrete Morse theory. A Morse sequence is a sequence composed solely of two elementary operations, that is, expansions (the inverse of a collapse), and fillings (the inverse of a perforation). We show that a Morse sequence may be seen as an alternative way to represent the gradient vector field of an arbitrary discrete Morse function. We also show that it is possible, in a straightforward manner, to make a link between Morse sequences and different kinds of Morse functions. At last, we introduce maximal Morse sequences, which formalize two basic schemes for building a Morse sequence from an arbitrary simplicial complex.

We consider the task of constructing confidence intervals with differential privacy. We propose two private variants of the non-parametric bootstrap, which privately compute the median of the results of multiple ``little'' bootstraps run on partitions of the data and give asymptotic bounds on the coverage error of the resulting confidence intervals. For a fixed differential privacy parameter $\epsilon$, our methods enjoy the same error rates as that of the non-private bootstrap to within logarithmic factors in the sample size $n$. We empirically validate the performance of our methods for mean estimation, median estimation, and logistic regression with both real and synthetic data. Our methods achieve similar coverage accuracy to existing methods (and non-private baselines) while providing notably shorter ($\gtrsim 10$ times) confidence intervals than previous approaches.

Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. To address this problem, we proposed the MR using Bias-corrected Estimating Equation (MRBEE) that can infer unbiased causal relationships with many weak IVs and account for horizontal pleiotropy simultaneously. While the practical significance of MRBEE was demonstrated in our parallel work (Lorincz-Comi (2023)), this paper established the statistical theories of multivariable IVW and MRBEE with many weak IVs. First, we showed that the bias of the multivariable IVW estimate is caused by the error-in-variable bias, whose scale and direction are inflated and influenced by weak instrument bias and sample overlaps of exposures and outcome GWAS cohorts, respectively. Second, we investigated the asymptotic properties of multivariable IVW and MRBEE, showing that MRBEE outperforms multivariable IVW regarding unbiasedness of causal effect estimation and asymptotic validity of causal inference. Finally, we applied MRBEE to examine myopia and revealed that education and outdoor activity are causal to myopia whereas indoor activity is not.

Limited amount of data and data sharing restrictions, due to GDPR compliance, constitute two common factors leading to reduced availability and accessibility when referring to medical data. To tackle these issues, we introduce the technique of Learning Using Privileged Information. Aiming to substantiate the idea, we attempt to build a robust model that improves the segmentation quality of tumors on digital mammograms, by gaining privileged information knowledge during the training procedure. Towards this direction, a baseline model, called student, is trained on patches extracted from the original mammograms, while an auxiliary model with the same architecture, called teacher, is trained on the corresponding enhanced patches accessing, in this way, privileged information. We repeat the student training procedure by providing the assistance of the teacher model this time. According to the experimental results, it seems that the proposed methodology performs better in the most of the cases and it can achieve 10% higher F1 score in comparison with the baseline.

A new shock-tracking technique that avoids re-meshing the computational grid around the moving shock-front was recently proposed by the authors (Ciallella et al., 2020). The method combines the unstructured shock-fitting (Paciorri and Bonfiglioli,2009) approach, developed in the last decade by some of the authors, with ideas coming from embedded boundary methods. In particular, second-order extrapolations based on Taylor series expansions are employed to transfer the solution and retain high order of accuracy. This paper describes the basic idea behind the new method and further algorithmic improvements which make the extrapolated Discontinuity Tracking Technique (eDIT) capable of dealing with complex shock-topologies featuring shock-shock and shock-wall interactions occurring in steady problems. This method paves the way to a new class of shock-tracking techniques truly independent on the mesh structure and flow solver. Various test-cases are included to prove the potential of the method, demonstrate the key features of the methodology, and thoroughly evaluate several technical aspects related to the extrapolation from/onto the shock, and their impact on accuracy, and conservation.

We provide a new theoretical framework for the variable-step deferred correction (DC) methods based on the well-known BDF2 formula. By using the discrete orthogonal convolution kernels, some high-order BDF2-DC methods are proven to be stable on arbitrary time grids according to the recent definition of stability (SINUM, 60: 2253-2272). It significantly relaxes the existing step-ratio restrictions for the BDF2-DC methods (BIT, 62: 1789-1822). The associated sharp error estimates are established by taking the numerical effects of the starting approximations into account, and they suggest that the BDF2-DC methods have no aftereffect, that is, the lower-order starting scheme for the BDF2 scheme will not cause a loss in the accuracy of the high-order BDF2-DC methods. Extensive tests on the graded and random time meshes are presented to support the new theory.

We consider the posets of equivalence relations on finite sets under the standard embedding ordering and under the consecutive embedding ordering. In the latter case, the relations are also assumed to have an underlying linear order, which governs consecutive embeddings. For each poset we ask the well quasi-order and atomicity decidability questions: Given finitely many equivalence relations $\rho_1,\dots,\rho_k$, is the downward closed set Av$(\rho_1,\dots,\rho_k)$ consisting of all equivalence relations which do not contain any of $\rho_1,\dots,\rho_k$: (a) well-quasi-ordered, meaning that it contains no infinite antichains? and (b) atomic, meaning that it is not a union of two proper downward closed subsets, or, equivalently, that it satisfies the joint embedding property?

We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators.

Understanding the mechanisms through which neural networks extract statistics from input-label pairs is one of the most important unsolved problems in supervised learning. Prior works have identified that the gram matrices of the weights in trained neural networks of general architectures are proportional to the average gradient outer product of the model, in a statement known as the Neural Feature Ansatz (NFA). However, the reason these quantities become correlated during training is poorly understood. In this work, we explain the emergence of this correlation. We identify that the NFA is equivalent to alignment between the left singular structure of the weight matrices and a significant component of the empirical neural tangent kernels associated with those weights. We establish that the NFA introduced in prior works is driven by a centered NFA that isolates this alignment. We show that the speed of NFA development can be predicted analytically at early training times in terms of simple statistics of the inputs and labels. Finally, we introduce a simple intervention to increase NFA correlation at any given layer, which dramatically improves the quality of features learned.

Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.

北京阿比特科技有限公司