亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mendelian randomization (MR) is an instrumental variable (IV) approach to infer causal relationships between exposures and outcomes with genome-wide association studies (GWAS) summary data. However, the multivariable inverse-variance weighting (IVW) approach, which serves as the foundation for most MR approaches, cannot yield unbiased causal effect estimates in the presence of many weak IVs. To address this problem, we proposed the MR using Bias-corrected Estimating Equation (MRBEE) that can infer unbiased causal relationships with many weak IVs and account for horizontal pleiotropy simultaneously. While the practical significance of MRBEE was demonstrated in our parallel work (Lorincz-Comi (2023)), this paper established the statistical theories of multivariable IVW and MRBEE with many weak IVs. First, we showed that the bias of the multivariable IVW estimate is caused by the error-in-variable bias, whose scale and direction are inflated and influenced by weak instrument bias and sample overlaps of exposures and outcome GWAS cohorts, respectively. Second, we investigated the asymptotic properties of multivariable IVW and MRBEE, showing that MRBEE outperforms multivariable IVW regarding unbiasedness of causal effect estimation and asymptotic validity of causal inference. Finally, we applied MRBEE to examine myopia and revealed that education and outdoor activity are causal to myopia whereas indoor activity is not.

相關內容

We propose an individual claims reserving model based on the conditional Aalen-Johansen estimator, as developed in Bladt and Furrer (2023b). In our approach, we formulate a multi-state problem, where the underlying variable is the individual claim size, rather than time. The states in this model represent development periods, and we estimate the cumulative density function of individual claim sizes using the conditional Aalen-Johansen method as transition probabilities to an absorbing state. Our methodology reinterprets the concept of multi-state models and offers a strategy for modeling the complete curve of individual claim sizes. To illustrate our approach, we apply our model to both simulated and real datasets. Having access to the entire dataset enables us to support the use of our approach by comparing the predicted total final cost with the actual amount, as well as evaluating it in terms of the continuously ranked probability score.

We propose to improve the convergence properties of the single-reference coupled cluster (CC) method through an augmented Lagrangian formalism. The conventional CC method changes a linear high-dimensional eigenvalue problem with exponential size into a problem of determining the roots of a nonlinear system of equations that has a manageable size. However, current numerical procedures for solving this system of equations to get the lowest eigenvalue suffer from two practical issues: First, solving the CC equations may not converge, and second, when converging, they may converge to other -- potentially unphysical -- states, which are stationary points of the CC energy expression. We show that both issues can be dealt with when a suitably defined energy is minimized in addition to solving the original CC equations. We further propose an augmented Lagrangian method for coupled cluster (alm-CC) to solve the resulting constrained optimization problem. We numerically investigate the proposed augmented Lagrangian formulation showing that the convergence towards the ground state is significantly more stable and that the optimization procedure is less susceptible to local minima. Furthermore, the computational cost of alm-CC is comparable to the conventional CC method.

We address the problem of the best uniform approximation of a continuous function on a convex domain. The approximation is by linear combinations of a finite system of functions (not necessarily Chebyshev) under arbitrary linear constraints. By modifying the concept of alternance and of the Remez iterative procedure we present a method, which demonstrates its efficiency in numerical problems. The linear rate of convergence is proved under some favourable assumptions. A special attention is paid to systems of complex exponents, Gaussian functions, lacunar algebraic and trigonometric polynomials. Applications to signal processing, linear ODE, switching dynamical systems, and to Markov-Bernstein type inequalities are considered.

We propose a method for obtaining parsimonious decompositions of networks into higher order interactions which can take the form of arbitrary motifs.The method is based on a class of analytically solvable generative models, where vertices are connected via explicit copies of motifs, which in combination with non-parametric priors allow us to infer higher order interactions from dyadic graph data without any prior knowledge on the types or frequencies of such interactions. Crucially, we also consider 'degree--corrected' models that correctly reflect the degree distribution of the network and consequently prove to be a better fit for many real world--networks compared to non-degree corrected models. We test the presented approach on simulated data for which we recover the set of underlying higher order interactions to a high degree of accuracy. For empirical networks the method identifies concise sets of atomic subgraphs from within thousands of candidates that cover a large fraction of edges and include higher order interactions of known structural and functional significance. The method not only produces an explicit higher order representation of the network but also a fit of the network to analytically tractable models opening new avenues for the systematic study of higher order network structures.

The univariate dimension reduction (UDR) method stands as a way to estimate the statistical moments of the output that is effective in a large class of uncertainty quantification (UQ) problems. UDR's fundamental strategy is to approximate the original function using univariate functions so that the UQ cost only scales linearly with the dimension of the problem. Nonetheless, UDR's effectiveness can diminish when uncertain inputs have high variance, particularly when assessing the output's second and higher-order statistical moments. This paper proposes a new method, gradient-enhanced univariate dimension reduction (GUDR), that enhances the accuracy of UDR by incorporating univariate gradient function terms into the UDR approximation function. Theoretical results indicate that the GUDR approximation is expected to be one order more accurate than UDR in approximating the original function, and it is expected to generate more accurate results in computing the output's second and higher-order statistical moments. Our proposed method uses a computational graph transformation strategy to efficiently evaluate the GUDR approximation function on tensor-grid quadrature inputs, and use the tensor-grid input-output data to compute the statistical moments of the output. With an efficient automatic differentiation method to compute the gradients, our method preserves UDR's linear scaling of computation time with problem dimension. Numerical results show that the GUDR is more accurate than UDR in estimating the standard deviation of the output and has a performance comparable to the method of moments using a third-order Taylor series expansion.

We introduce a 2-dimensional stochastic dominance (2DSD) index to characterize both strict and almost stochastic dominance. Based on this index, we derive an estimator for the minimum violation ratio (MVR), also known as the critical parameter, of the almost stochastic ordering condition between two variables. We determine the asymptotic properties of the empirical 2DSD index and MVR for the most frequently used stochastic orders. We also provide conditions under which the bootstrap estimators of these quantities are strongly consistent. As an application, we develop consistent bootstrap testing procedures for almost stochastic dominance. The performance of the tests is checked via simulations and the analysis of real data.

Dynamical systems across the sciences, from electrical circuits to ecological networks, undergo qualitative and often catastrophic changes in behavior, called bifurcations, when their underlying parameters cross a threshold. Existing methods predict oncoming catastrophes in individual systems but are primarily time-series-based and struggle both to categorize qualitative dynamical regimes across diverse systems and to generalize to real data. To address this challenge, we propose a data-driven, physically-informed deep-learning framework for classifying dynamical regimes and characterizing bifurcation boundaries based on the extraction of topologically invariant features. We focus on the paradigmatic case of the supercritical Hopf bifurcation, which is used to model periodic dynamics across a wide range of applications. Our convolutional attention method is trained with data augmentations that encourage the learning of topological invariants which can be used to detect bifurcation boundaries in unseen systems and to design models of biological systems like oscillatory gene regulatory networks. We further demonstrate our method's use in analyzing real data by recovering distinct proliferation and differentiation dynamics along pancreatic endocrinogenesis trajectory in gene expression space based on single-cell data. Our method provides valuable insights into the qualitative, long-term behavior of a wide range of dynamical systems, and can detect bifurcations or catastrophic transitions in large-scale physical and biological systems.

We develop a new coarse-scale approximation strategy for the nonlinear single-continuum Richards equation as an unsaturated flow over heterogeneous non-periodic media, using the online generalized multiscale finite element method (online GMsFEM) together with deep learning. A novelty of this approach is that local online multiscale basis functions are computed rapidly and frequently by utilizing deep neural networks (DNNs). More precisely, we employ the training set of stochastic permeability realizations and the computed relating online multiscale basis functions to train neural networks. The nonlinear map between such permeability fields and online multiscale basis functions is developed by our proposed deep learning algorithm. That is, in a new way, the predicted online multiscale basis functions incorporate the nonlinearity treatment of the Richards equation and refect any time-dependent changes in the problem's properties. Multiple numerical experiments in two-dimensional model problems show the good performance of this technique, in terms of predictions of the online multiscale basis functions and thus finding solutions.

Homogeneous normalized random measures with independent increments (hNRMIs) represent a broad class of Bayesian nonparametric priors and thus are widely used. In this paper, we obtain the strong law of large numbers, the central limit theorem and the functional central limit theorem of hNRMIs when the concentration parameter $a$ approaches infinity. To quantify the convergence rate of the obtained central limit theorem, we further study the Berry-Esseen bound, which turns out to be of the form $O \left( \frac{1}{\sqrt{a}}\right)$. As an application of the central limit theorem, we present the functional delta method, which can be employed to obtain the limit of the quantile process of hNRMIs. As an illustration of the central limit theorems, we demonstrate the convergence numerically for the Dirichlet processes and the normalized inverse Gaussian processes with various choices of the concentration parameters.

Printing custom DNA sequences is essential to scientific and biomedical research, but the technology can be used to manufacture plagues as well as cures. Just as ink printers recognize and reject attempts to counterfeit money, DNA synthesizers and assemblers should deny unauthorized requests to make viral DNA that could be used to ignite a pandemic. There are three complications. First, we don't need to quickly update printers to deal with newly discovered currencies, whereas we regularly learn of new viruses and other biological threats. Second, anti-counterfeiting specifications on a local printer can't be extracted and misused by malicious actors, unlike information on biological threats. Finally, any screening must keep the inspected DNA sequences private, as they may constitute valuable trade secrets. Here we describe SecureDNA, a free, privacy-preserving, and fully automated system capable of verifiably screening all DNA synthesis orders of 30+ base pairs against an up-to-date database of hazards, and its operational performance and specificity when applied to 67 million base pairs of DNA synthesized by providers in the United States, Europe, and China.

北京阿比特科技有限公司