亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The classical work of (Arora et al., 1999) provides a scheme that gives, for any $\epsilon>0$, a polynomial time $1-\epsilon$ approximation algorithm for dense instances of a family of $\mathcal{NP}$-hard problems, such as Max-CUT and Max-$k$-SAT. In this paper we extend and speed up this scheme using a logarithmic number of one-bit predictions. We propose a learning augmented framework which aims at finding fast algorithms which guarantees approximation consistency, smoothness and robustness with respect to the prediction error. We provide such algorithms, which moreover use predictions parsimoniously, for dense instances of various optimization problems.

相關內容

We consider the gradient descent flow widely used for the minimization of the $\mathcal{L}^2$ cost function in Deep Learning networks, and introduce two modified versions; one adapted for the overparametrized setting, and the other for the underparametrized setting. Both have a clear and natural invariant geometric meaning, taking into account the pullback vector bundle structure in the overparametrized, and the pushforward vector bundle structure in the underparametrized setting. In the overparametrized case, we prove that, provided that a rank condition holds, all orbits of the modified gradient descent drive the $\mathcal{L}^2$ cost to its global minimum at a uniform exponential convergence rate; one thereby obtains an a priori stopping time for any prescribed proximity to the global minimum. We point out relations of the latter to sub-Riemannian geometry.

A unified construction of $H(\textrm{div})$-conforming finite element tensors, including vector div element, symmetric div matrix element, traceless div matrix element, and in general tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Then the tensor at each sub-simplex is decomposed into the tangential and the normal component. The tangential component forms the bubble function space and the normal component characterizes the trace. A deep exploration on boundary degrees of freedom is presented for discovering various finite elements. The developed finite element spaces are $H(\textrm{div})$-conforming and satisfy the discrete inf-sup condition. An explicit basis of the constraint tensor space is also established.

As an important part of genetic algorithms (GAs), mutation operators is widely used in evolutionary algorithms to solve $\mathcal{NP}$-hard problems because it can increase the population diversity of individual. Due to limitations in mathematical tools, the mutation probability of the mutation operator is primarily empirically set in practical applications. In this paper, we propose a novel reduction method for the 0-1 knapsack problem(0-1 KP) and an improved mutation operator (IMO) based on the assumption $\mathcal{NP}\neq\mathcal{P}$, along with the utilization of linear relaxation techniques and a recent result by Dey et al. (Math. Prog., pp 569-587, 2022). We employ this method to calculate an upper bound of the mutation probability in general instances of the 0-1 KP, and construct an instance where the mutation probability does not tend towards 0 as the problem size increases. Finally, we prove that the probability of the IMO hitting the optimal solution within only a single iteration in large-scale instances is superior to that of the traditional mutation operator.

We show that every $3$-connected $K_{2,\ell}$-minor free graph with minimum degree at least $4$ has maximum degree at most $7\ell$. As a consequence, we show that every 3-connected $K_{2,\ell}$-minor free graph with minimum degree at least $5$ and no twins of degree $5$ has bounded size. Our proofs use Steiner trees and nested cuts; in particular, they do not rely on Ding's characterization of $K_{2,\ell}$-minor free graphs.

Based on the theory of homogeneous spaces we derive geometrically optimal edge attributes to be used within the flexible message-passing framework. We formalize the notion of weight sharing in convolutional networks as the sharing of message functions over point-pairs that should be treated equally. We define equivalence classes of point-pairs that are identical up to a transformation in the group and derive attributes that uniquely identify these classes. Weight sharing is then obtained by conditioning message functions on these attributes. As an application of the theory, we develop an efficient equivariant group convolutional network for processing 3D point clouds. The theory of homogeneous spaces tells us how to do group convolutions with feature maps over the homogeneous space of positions $\mathbb{R}^3$, position and orientations $\mathbb{R}^3 {\times} S^2$, and the group $SE(3)$ itself. Among these, $\mathbb{R}^3 {\times} S^2$ is an optimal choice due to the ability to represent directional information, which $\mathbb{R}^3$ methods cannot, and it significantly enhances computational efficiency compared to indexing features on the full $SE(3)$ group. We support this claim with state-of-the-art results -- in accuracy and speed -- on five different benchmarks in 2D and 3D, including interatomic potential energy prediction, trajectory forecasting in N-body systems, and generating molecules via equivariant diffusion models.

The monotonicity of discrete Laplacian, i.e., inverse positivity of stiffness matrix, implies discrete maximum principle, which is in general not true for high order accurate schemes on unstructured meshes. On the other hand, it is possible to construct high order accurate monotone schemes on structured meshes. All previously known high order accurate inverse positive schemes are fourth order accurate schemes, which is either an M-matrix or a product of two M-matrices. For the $Q^3$ spectral element method for the two-dimensional Laplacian, we prove its stiffness matrix is a product of four M-matrices thus it is monotone. Such a scheme can be regarded as a fifth order accurate finite difference scheme.

In this paper, we explicitly determine local and global minimizers of the $\mathcal{L}^2$ cost function in underparametrized Deep Learning (DL) networks; our main goal is to shed light on their geometric structure and properties. We accomplish this by a direct construction, without invoking the gradient descent flow at any point of this work. We specifically consider $L$ hidden layers, a ReLU ramp activation function, an $\mathcal{L}^2$ Schatten class (or Hilbert-Schmidt) cost function, input and output spaces $\mathbb{R}^Q$ with equal dimension $Q\geq1$, and hidden layers also defined on $\mathbb{R}^{Q}$; the training inputs are assumed to be sufficiently clustered. The training input size $N$ can be arbitrarily large - thus, we are considering the underparametrized regime. More general settings are left to future work. We construct an explicit family of minimizers for the global minimum of the cost function in the case $L\geq Q$, which we show to be degenerate. Moreover, we determine a set of $2^Q-1$ distinct degenerate local minima of the cost function. In the context presented here, the concatenation of hidden layers of the DL network is reinterpreted as a recursive application of a {\em truncation map} which "curates" the training inputs by minimizing their noise to signal ratio.

Object detection on visible (RGB) and infrared (IR) images, as an emerging solution to facilitate robust detection for around-the-clock applications, has received extensive attention in recent years. With the help of IR images, object detectors have been more reliable and robust in practical applications by using RGB-IR combined information. However, existing methods still suffer from modality miscalibration and fusion imprecision problems. Since transformer has the powerful capability to model the pairwise correlations between different features, in this paper, we propose a novel Calibrated and Complementary Transformer called $\mathrm{C}^2$Former to address these two problems simultaneously. In $\mathrm{C}^2$Former, we design an Inter-modality Cross-Attention (ICA) module to obtain the calibrated and complementary features by learning the cross-attention relationship between the RGB and IR modality. To reduce the computational cost caused by computing the global attention in ICA, an Adaptive Feature Sampling (AFS) module is introduced to decrease the dimension of feature maps. Because $\mathrm{C}^2$Former performs in the feature domain, it can be embedded into existed RGB-IR object detectors via the backbone network. Thus, one single-stage and one two-stage object detector both incorporating our $\mathrm{C}^2$Former are constructed to evaluate its effectiveness and versatility. With extensive experiments on the DroneVehicle and KAIST RGB-IR datasets, we verify that our method can fully utilize the RGB-IR complementary information and achieve robust detection results. The code is available at //github.com/yuanmaoxun/Calibrated-and-Complementary-Transformer-for-RGB-Infrared-Object-Detection.git.

Constructing small-sized coresets for various clustering problems in different metric spaces has attracted significant attention for the past decade. A central problem in the coreset literature is to understand what is the best possible coreset size for $(k,z)$-clustering in Euclidean space. While there has been significant progress in the problem, there is still a gap between the state-of-the-art upper and lower bounds. For instance, the best known upper bound for $k$-means ($z=2$) is $\min \{O(k^{3/2} \varepsilon^{-2}),O(k \varepsilon^{-4})\}$ [1,2], while the best known lower bound is $\Omega(k\varepsilon^{-2})$ [1]. In this paper, we make significant progress on both upper and lower bounds. For a large range of parameters (i.e., $\varepsilon, k$), we have a complete understanding of the optimal coreset size. In particular, we obtain the following results: (1) We present a new coreset lower bound $\Omega(k \varepsilon^{-z-2})$ for Euclidean $(k,z)$-clustering when $\varepsilon \geq \Omega(k^{-1/(z+2)})$. In view of the prior upper bound $\tilde{O}_z(k \varepsilon^{-z-2})$ [1], the bound is optimal. The new lower bound also implies improved lower bounds for $(k,z)$-clustering in doubling metrics. (2) For the upper bound, we provide efficient coreset construction algorithms for $(k,z)$-clustering with improved or optimal coreset sizes in several metric spaces. In particular, we provide an $\tilde{O}_z(k^{\frac{2z+2}{z+2}} \varepsilon^{-2})$-sized coreset, with a unfied analysis, for $(k,z)$-clustering for all $z\geq 1$ in Euclidean space. [1] Cohen-Addad, Larsen, Saulpic, Schwiegelshohn. STOC'22. [2] Cohen-Addad, Larsen, Saulpic, Schwiegelshohn, Sheikh-Omar, NeurIPS'22.

This paper introduces AL$\ell_0$CORE, a new form of probabilistic non-negative tensor decomposition. AL$\ell_0$CORE is a Tucker decomposition where the number of non-zero elements (i.e., the $\ell_0$-norm) of the core tensor is constrained to a preset value $Q$ much smaller than the size of the core. While the user dictates the total budget $Q$, the locations and values of the non-zero elements are latent variables and allocated across the core tensor during inference. AL$\ell_0$CORE -- i.e., $allo$cated $\ell_0$-$co$nstrained $core$-- thus enjoys both the computational tractability of CP decomposition and the qualitatively appealing latent structure of Tucker. In a suite of real-data experiments, we demonstrate that AL$\ell_0$CORE typically requires only tiny fractions (e.g.,~1%) of the full core to achieve the same results as full Tucker decomposition at only a correspondingly tiny fraction of the cost.

北京阿比特科技有限公司