亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Force modulation of robotic manipulators has been extensively studied for several decades. However, it is not yet commonly used in safety-critical applications due to a lack of accurate interaction contact modeling and weak performance guarantees - a large proportion of them concerning the modulation of interaction forces. This study presents a high-level framework for simultaneous trajectory optimization and force control of the interaction between a manipulator and soft environments, which is prone to external disturbances. Sliding friction and normal contact force are taken into account. The dynamics of the soft contact model and the manipulator are simultaneously incorporated in a trajectory optimizer to generate desired motion and force profiles. A constrained optimization framework based on Alternative Direction Method of Multipliers (ADMM) has been employed to efficiently generate real-time optimal control inputs and high-dimensional state trajectories in a Model Predictive Control fashion. Experimental validation of the model performance is conducted on a soft substrate with known material properties using a Cartesian space force control mode. Results show a comparison of ground truth and real-time model-based contact force and motion tracking for multiple Cartesian motions in the valid range of the friction model. It is shown that a contact model-based motion planner can compensate for frictional forces and motion disturbances and improve the overall motion and force tracking accuracy. The proposed high-level planner has the potential to facilitate the automation of medical tasks involving the manipulation of compliant, delicate, and deformable tissues.

相關內容

Through the increasing interconnection between various systems, the need for confidential systems is increasing. Confidential systems share data only with authorized entities. However, estimating the confidentiality of a system is complex, and adjusting an already deployed software is costly. Thus, it is helpful to have confidentiality analyses, which can estimate the confidentiality already at design time. Based on an existing data-flow-based confidentiality analysis concept, we reimplemented a data flow analysis as a Java-based tool. The tool uses the software architecture to identify access violations based on the data flow. The evaluation for our tool indicates that we can analyze similar scenarios and scale for certain scenarios better than the existing analysis.

The diffusion model is capable of generating high-quality data through a probabilistic approach. However, it suffers from the drawback of slow generation speed due to the requirement of a large number of time steps. To address this limitation, recent models such as denoising diffusion implicit models (DDIM) focus on generating samples without directly modeling the probability distribution, while models like denoising diffusion generative adversarial networks (GAN) combine diffusion processes with GANs. In the field of speech synthesis, a recent diffusion speech synthesis model called DiffGAN-TTS, utilizing the structure of GANs, has been introduced and demonstrates superior performance in both speech quality and generation speed. In this paper, to further enhance the performance of DiffGAN-TTS, we propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data. Objective metrics such as structural similarity index measure (SSIM), mel-cepstral distortion (MCD), F0 root mean squared error (F0 RMSE), short-time objective intelligibility (STOI), perceptual evaluation of speech quality (PESQ), as well as subjective metrics like mean opinion score (MOS), are used to evaluate the performance of the proposed model. The evaluation results show that the proposed model outperforms recent state-of-the-art models such as FastSpeech2 and DiffGAN-TTS in various metrics. Our implementation and audio samples are located on GitHub.

For Industry 4.0 Revolution, cooperative autonomous mobility systems are widely used based on multi-agent reinforcement learning (MARL). However, the MARL-based algorithms suffer from huge parameter utilization and convergence difficulties with many agents. To tackle these problems, a quantum MARL (QMARL) algorithm based on the concept of actor-critic network is proposed, which is beneficial in terms of scalability, to deal with the limitations in the noisy intermediate-scale quantum (NISQ) era. Additionally, our QMARL is also beneficial in terms of efficient parameter utilization and fast convergence due to quantum supremacy. Note that the reward in our QMARL is defined as task precision over computation time in multiple agents, thus, multi-agent cooperation can be realized. For further improvement, an additional technique for scalability is proposed, which is called projection value measure (PVM). Based on PVM, our proposed QMARL can achieve the highest reward, by reducing the action dimension into a logarithmic-scale. Finally, we can conclude that our proposed QMARL with PVM outperforms the other algorithms in terms of efficient parameter utilization, fast convergence, and scalability.

Vehicle re-identification helps in distinguishing between images of the same and other vehicles. It is a challenging process because of significant intra-instance differences between identical vehicles from different views and subtle inter-instance differences between similar vehicles. To solve this issue, researchers have extracted view-aware or part-specific features via spatial attention mechanisms, which usually result in noisy attention maps or otherwise require expensive additional annotation for metadata, such as key points, to improve the quality. Meanwhile, based on the researchers' insights, various handcrafted multi-attention architectures for specific viewpoints or vehicle parts have been proposed. However, this approach does not guarantee that the number and nature of attention branches will be optimal for real-world re-identification tasks. To address these problems, we proposed a new vehicle re-identification network based on a multiple soft attention mechanism for capturing various discriminative regions from different viewpoints more efficiently. Furthermore, this model can significantly reduce the noise in spatial attention maps by devising a new method for creating an attention map for insignificant regions and then excluding it from generating the final result. We also combined a channel-wise attention mechanism with a spatial attention mechanism for the efficient selection of important semantic attributes for vehicle re-identification. Our experiments showed that our proposed model achieved a state-of-the-art performance among the attention-based methods without metadata and was comparable to the approaches using metadata for the VehicleID and VERI-Wild datasets.

The LiDAR fiducial marker, akin to the well-known AprilTag used in camera applications, serves as a convenient resource to impart artificial features to the LiDAR sensor, facilitating robotics applications. Unfortunately, current LiDAR fiducial marker detection methods are limited to occlusion-free point clouds. In this work, we present a novel approach for occlusion-resistant LiDAR fiducial marker detection. We first extract 3D points potentially corresponding to the markers, leveraging the 3D intensity gradients. Afterward, we analyze the 3D spatial distribution of the extracted points through clustering. Subsequently, we determine the potential marker locations by examining the geometric characteristics of these clusters. We then successively transfer the 3D points that fall within the candidate locations from the raw point cloud onto a designed intermediate plane. Finally, using the intermediate plane, we validate each location for the presence of a fiducial marker and compute the marker's pose if found. We conduct both qualitative and quantitative experiments to demonstrate that our approach is the first LiDAR fiducial marker detection method applicable to point clouds with occlusion while achieving better accuracy.

To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-level prediction and pixel-level prediction. To fill this gap, we aim to design an effective, dense self-supervised learning method that directly works at the level of pixels (or local features) by taking into account the correspondence between local features. We present dense contrastive learning, which implements self-supervised learning by optimizing a pairwise contrastive (dis)similarity loss at the pixel level between two views of input images. Compared to the baseline method MoCo-v2, our method introduces negligible computation overhead (only <1% slower), but demonstrates consistently superior performance when transferring to downstream dense prediction tasks including object detection, semantic segmentation and instance segmentation; and outperforms the state-of-the-art methods by a large margin. Specifically, over the strong MoCo-v2 baseline, our method achieves significant improvements of 2.0% AP on PASCAL VOC object detection, 1.1% AP on COCO object detection, 0.9% AP on COCO instance segmentation, 3.0% mIoU on PASCAL VOC semantic segmentation and 1.8% mIoU on Cityscapes semantic segmentation. Code is available at: //git.io/AdelaiDet

Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

北京阿比特科技有限公司