The diffusion model is capable of generating high-quality data through a probabilistic approach. However, it suffers from the drawback of slow generation speed due to the requirement of a large number of time steps. To address this limitation, recent models such as denoising diffusion implicit models (DDIM) focus on generating samples without directly modeling the probability distribution, while models like denoising diffusion generative adversarial networks (GAN) combine diffusion processes with GANs. In the field of speech synthesis, a recent diffusion speech synthesis model called DiffGAN-TTS, utilizing the structure of GANs, has been introduced and demonstrates superior performance in both speech quality and generation speed. In this paper, to further enhance the performance of DiffGAN-TTS, we propose a speech synthesis model with two discriminators: a diffusion discriminator for learning the distribution of the reverse process and a spectrogram discriminator for learning the distribution of the generated data. Objective metrics such as structural similarity index measure (SSIM), mel-cepstral distortion (MCD), F0 root mean squared error (F0 RMSE), short-time objective intelligibility (STOI), perceptual evaluation of speech quality (PESQ), as well as subjective metrics like mean opinion score (MOS), are used to evaluate the performance of the proposed model. The evaluation results show that the proposed model outperforms recent state-of-the-art models such as FastSpeech2 and DiffGAN-TTS in various metrics. Our implementation and audio samples are located on GitHub.
In this work, the problem of shape optimization, subject to PDE constraints, is reformulated as an $L^p$ best approximation problem under divergence constraints to the shape tensor introduced in Laurain and Sturm: ESAIM Math. Model. Numer. Anal. 50 (2016). More precisely, the main result of this paper states that the $L^p$ distance of the above approximation problem is equal to the dual norm of the shape derivative considered as a functional on $W^{1,p^\ast}$ (where $1/p + 1/p^\ast = 1$). This implies that for any given shape, one can evaluate its distance from being a stationary one with respect to the shape derivative by simply solving the associated $L^p$-type least mean approximation problem. Moreover, the Lagrange multiplier for the divergence constraint turns out to be the shape deformation of steepest descent. This provides a way, as an alternative to the approach by Deckelnick, Herbert and Hinze: ESAIM Control Optim. Calc. Var. 28 (2022), for computing shape gradients in $W^{1,p^\ast}$ for $p^\ast \in ( 2 , \infty )$. The discretization of the least mean approximation problem is done with (lowest-order) matrix-valued Raviart-Thomas finite element spaces leading to piecewise constant approximations of the shape deformation acting as Lagrange multiplier. Admissible deformations in $W^{1,p^\ast}$ to be used in a shape gradient iteration are reconstructed locally. Our computational results confirm that the $L^p$ distance of the best approximation does indeed measure the distance of the considered shape to optimality. Also confirmed by our computational tests are the observations that choosing $p^\ast$ (much) larger than 2 (which means that $p$ must be close to 1 in our best approximation problem) decreases the chance of encountering mesh degeneracy during the shape gradient iteration.
Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.
Large language models (LLMs) provide a new way to build chatbots by accepting natural language prompts. Yet, it is unclear how to design prompts to power chatbots to carry on naturalistic conversations while pursuing a given goal, such as collecting self-report data from users. We explore what design factors of prompts can help steer chatbots to talk naturally and collect data reliably. To this aim, we formulated four prompt designs with different structures and personas. Through an online study (N = 48) where participants conversed with chatbots driven by different designs of prompts, we assessed how prompt designs and conversation topics affected the conversation flows and users' perceptions of chatbots. Our chatbots covered 79% of the desired information slots during conversations, and the designs of prompts and topics significantly influenced the conversation flows and the data collection performance. We discuss the opportunities and challenges of building chatbots with LLMs.
Memory interference may heavily inflate task execution times in Heterogeneous Systems-on-Chips (HeSoCs). Knowing worst-case interference is consequently fundamental for supporting the correct execution of time-sensitive applications. In most of the literature, worst-case interference is assumed to be generated by, and therefore is estimated through read-intensive synthetic workloads with no caching. Yet these workloads do not always generate worst-case interference. This is the consequence of the general results reported in this work. By testing on multiple architectures, we determined that the highest interference generation traffic pattern is actually hardware dependant, and that making assumptions could lead to a severe underestimation of the worst-case (in our case, of more than 9x).
Connectionist temporal classification (CTC) is commonly adopted for sequence modeling tasks like speech recognition, where it is necessary to preserve order between the input and target sequences. However, CTC is only applied to deterministic sequence models, where the latent space is discontinuous and sparse, which in turn makes them less capable of handling data variability when compared to variational models. In this paper, we integrate CTC with a variational model and derive loss functions that can be used to train more generalizable sequence models that preserve order. Specifically, we derive two versions of the novel variational CTC based on two reasonable assumptions, the first being that the variational latent variables at each time step are conditionally independent; and the second being that these latent variables are Markovian. We show that both loss functions allow direct optimization of the variational lower bound for the model log-likelihood, and present computationally tractable forms for implementing them.
Deep Material Network (DMN) has recently emerged as a data-driven surrogate model for heterogeneous materials. Given a particular microstructural morphology, the effective linear and nonlinear behaviors can be successfully approximated by such physics-based neural-network like architecture. In this work, a novel parametric DMN architecture is proposed for multiscale materials with a varying microstructure characterized by several parameters. A Physics-Informed Neural Network (PINN) is used to account for the dependence of DMN fitting parameters on the microstructural ones. Micromechanical constraints are prescribed both on the network architecture and on the output of this PINN. The proposed PINN-DMN architecture is also recast in a multiphysics setting, where physical properties other than the mechanical ones can also be predicted. In the numerical simulations conducted on three parametric microstructures, PINN-DMN demonstrates satisfying interpolative and extrapolative generalization capabilities when morphology varies. The effective multiphysics behaviors of such parametric multiscale materials can thus be predicted and encoded by PINN-DMN with high accuracy and efficiency.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.