亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Constrained second-order convex optimization algorithms are the method of choice when a high accuracy solution to a problem is needed, due to their local quadratic convergence. These algorithms require the solution of a constrained quadratic subproblem at every iteration. We present the \emph{Second-Order Conditional Gradient Sliding} (SOCGS) algorithm, which uses a projection-free algorithm to solve the constrained quadratic subproblems inexactly. When the feasible region is a polytope the algorithm converges quadratically in primal gap after a finite number of linearly convergent iterations. Once in the quadratic regime the SOCGS algorithm requires $\mathcal{O}(\log(\log 1/\varepsilon))$ first-order and Hessian oracle calls and $\mathcal{O}(\log (1/\varepsilon) \log(\log1/\varepsilon))$ linear minimization oracle calls to achieve an $\varepsilon$-optimal solution. This algorithm is useful when the feasible region can only be accessed efficiently through a linear optimization oracle, and computing first-order information of the function, although possible, is costly.

相關內容

甲骨文公司,全稱甲骨文股份有限公司(甲骨文軟件系統有限公司),是全球最大的企業級軟件公司,總部位于美國加利福尼亞州的紅木灘。1989年正式進入中國市場。2013年,甲骨文已超越 IBM ,成為繼 Microsoft 后全球第二大軟件公司。

The sliced Wasserstein (SW) distance has been widely recognized as a statistically effective and computationally efficient metric between two probability measures. A key component of the SW distance is the slicing distribution. There are two existing approaches for choosing this distribution. The first approach is using a fixed prior distribution. The second approach is optimizing for the best distribution which belongs to a parametric family of distributions and can maximize the expected distance. However, both approaches have their limitations. A fixed prior distribution is non-informative in terms of highlighting projecting directions that can discriminate two general probability measures. Doing optimization for the best distribution is often expensive and unstable. Moreover, designing the parametric family of the candidate distribution could be easily misspecified. To address the issues, we propose to design the slicing distribution as an energy-based distribution that is parameter-free and has the density proportional to an energy function of the projected one-dimensional Wasserstein distance. We then derive a novel sliced Wasserstein metric, energy-based sliced Waserstein (EBSW) distance, and investigate its topological, statistical, and computational properties via importance sampling, sampling importance resampling, and Markov Chain methods. Finally, we conduct experiments on point-cloud gradient flow, color transfer, and point-cloud reconstruction to show the favorable performance of the EBSW.

We consider the max-min fair resource allocation problem. The best-known solutions use either a sequence of optimizations or waterfilling, which only applies to a narrow set of cases. These solutions have become a practical bottleneck in WAN traffic engineering and cluster scheduling, especially at larger problem sizes. We improve both approaches: (1) we show how to convert the optimization sequence into a single fast optimization, and (2) we generalize waterfilling to the multi-path case. We empirically show our new algorithms Pareto-dominate prior techniques: they produce faster, fairer, and more efficient allocations. Some of our allocators also have theoretical guarantees: they trade off a bounded amount of unfairness for faster allocation. We have deployed our allocators in Azure's WAN traffic engineering pipeline, where we preserve solution quality and achieve a roughly $3\times$ speedup.

In many problems, it is desirable to optimize an objective function while imposing constraints on some other aspect of the problem. A Constrained Partially Observable Markov Decision Process (C-POMDP) allows modelling of such problems while subject to transition uncertainty and partial observability. Typically, the constraints in C-POMDPs enforce a threshold on expected cumulative costs starting from an initial state distribution. In this work, we first show that optimal C-POMDP policies may violate Bellman's principle of optimality and thus may exhibit pathological behaviors, which can be undesirable for many applications. To address this drawback, we introduce a new formulation, the Recursively-Constrained POMDP (RC-POMDP), that imposes additional history dependent cost constraints on the C-POMDP. We show that, unlike C-POMDPs, RC-POMDPs always have deterministic optimal policies, and that optimal policies obey Bellman's principle of optimality. We also present a point-based dynamic programming algorithm that synthesizes optimal policies for RC-POMDPs. In our evaluations, we show that policies for RC-POMDPs produce more desirable behavior than policies for C-POMDPs and demonstrate the efficacy of our algorithm across a set of benchmark problems.

Anomaly detection is an important field that aims to identify unexpected patterns or data points, and it is closely related to many real-world problems, particularly to applications in finance, manufacturing, cyber security, and so on. While anomaly detection has been studied extensively in various fields, detecting future anomalies before they occur remains an unexplored territory. In this paper, we present a novel type of anomaly detection, called Precursor-of-Anomaly (PoA) detection. Unlike conventional anomaly detection, which focuses on determining whether a given time series observation is an anomaly or not, PoA detection aims to detect future anomalies before they happen. To solve both problems at the same time, we present a neural controlled differential equation-based neural network and its multi-task learning algorithm. We conduct experiments using 17 baselines and 3 datasets, including regular and irregular time series, and demonstrate that our presented method outperforms the baselines in almost all cases. Our ablation studies also indicate that the multitasking training method significantly enhances the overall performance for both anomaly and PoA detection.

This work aims to numerically construct exactly commuting matrices close to given almost commuting ones, which is equivalent to the joint approximate diagonalization problem. We first prove that almost commuting matrices generically have approximate common eigenvectors that are almost orthogonal to each other. Based on this key observation, we propose a fast and robust vector-wise joint diagonalization (VJD) algorithm, which constructs the orthogonal similarity transform by sequentially finding these approximate common eigenvectors. In doing so, we consider sub-optimization problems over the unit sphere, for which we present a Riemannian quasi-Newton method with rigorous convergence analysis. We also discuss the numerical stability of the proposed VJD algorithm. Numerical examples with applications in independent component analysis are provided to reveal the relation with Huaxin Lin's theorem and to demonstrate that our method compares favorably with the state-of-the-art Jacobi-type joint diagonalization algorithm.

Matrix-variate distributions are a recent addition to the model-based clustering field, thereby making it possible to analyze data in matrix form with complex structure such as images and time series. Due to its recent appearance, there is limited literature on matrix-variate data, with even less on dealing with outliers in these models. An approach for clustering matrix-variate normal data with outliers is discussed. The approach, which uses the distribution of subset log-likelihoods, extends the OCLUST algorithm to matrix-variate normal data and uses an iterative approach to detect and trim outliers.

The adaptive processing of structured data is a long-standing research topic in machine learning that investigates how to automatically learn a mapping from a structured input to outputs of various nature. Recently, there has been an increasing interest in the adaptive processing of graphs, which led to the development of different neural network-based methodologies. In this thesis, we take a different route and develop a Bayesian Deep Learning framework for graph learning. The dissertation begins with a review of the principles over which most of the methods in the field are built, followed by a study on graph classification reproducibility issues. We then proceed to bridge the basic ideas of deep learning for graphs with the Bayesian world, by building our deep architectures in an incremental fashion. This framework allows us to consider graphs with discrete and continuous edge features, producing unsupervised embeddings rich enough to reach the state of the art on several classification tasks. Our approach is also amenable to a Bayesian nonparametric extension that automatizes the choice of almost all model's hyper-parameters. Two real-world applications demonstrate the efficacy of deep learning for graphs. The first concerns the prediction of information-theoretic quantities for molecular simulations with supervised neural models. After that, we exploit our Bayesian models to solve a malware-classification task while being robust to intra-procedural code obfuscation techniques. We conclude the dissertation with an attempt to blend the best of the neural and Bayesian worlds together. The resulting hybrid model is able to predict multimodal distributions conditioned on input graphs, with the consequent ability to model stochasticity and uncertainty better than most works. Overall, we aim to provide a Bayesian perspective into the articulated research field of deep learning for graphs.

Invariant approaches have been remarkably successful in tackling the problem of domain generalization, where the objective is to perform inference on data distributions different from those used in training. In our work, we investigate whether it is possible to leverage domain information from the unseen test samples themselves. We propose a domain-adaptive approach consisting of two steps: a) we first learn a discriminative domain embedding from unsupervised training examples, and b) use this domain embedding as supplementary information to build a domain-adaptive model, that takes both the input as well as its domain into account while making predictions. For unseen domains, our method simply uses few unlabelled test examples to construct the domain embedding. This enables adaptive classification on any unseen domain. Our approach achieves state-of-the-art performance on various domain generalization benchmarks. In addition, we introduce the first real-world, large-scale domain generalization benchmark, Geo-YFCC, containing 1.1M samples over 40 training, 7 validation, and 15 test domains, orders of magnitude larger than prior work. We show that the existing approaches either do not scale to this dataset or underperform compared to the simple baseline of training a model on the union of data from all training domains. In contrast, our approach achieves a significant improvement.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司