Privacy has become a major concern in machine learning. In fact, the federated learning is motivated by the privacy concern as it does not allow to transmit the private data but only intermediate updates. However, federated learning does not always guarantee privacy-preservation as the intermediate updates may also reveal sensitive information. In this paper, we give an explicit information-theoretical analysis of a federated expectation maximization algorithm for Gaussian mixture model and prove that the intermediate updates can cause severe privacy leakage. To address the privacy issue, we propose a fully decentralized privacy-preserving solution, which is able to securely compute the updates in each maximization step. Additionally, we consider two different types of security attacks: the honest-but-curious and eavesdropping adversary models. Numerical validation shows that the proposed approach has superior performance compared to the existing approach in terms of both the accuracy and privacy level.
Uncertainty quantification is crucial for assessing the predictive ability of AI algorithms. A large body of work (including normalizing flows and Bayesian neural networks) has been devoted to describing the entire predictive distribution (PD) of a target variable Y given input features $\mathbf{X}$. However, off-the-shelf PDs are usually far from being conditionally calibrated; i.e., the probability of occurrence of an event given input $\mathbf{X}$ can be significantly different from the predicted probability. Most current research on predictive inference (such as conformal prediction) concerns constructing calibrated prediction sets only. It is often believed that the problem of obtaining and assessing entire conditionally calibrated PDs is too challenging. In this work, we show that recalibration, as well as diagnostics of entire PDs, are indeed attainable goals in practice. Our proposed method relies on the idea of regressing probability integral transform (PIT) scores against $\mathbf{X}$. This regression gives full diagnostics of conditional coverage across the entire feature space and can be used to recalibrate misspecified PDs. We benchmark our corrected prediction bands against oracle bands and state-of-the-art predictive inference algorithms for synthetic data, including settings with a distributional shift. Finally, we produce calibrated PDs for two applications: (i) probabilistic nowcasting based on sequences of satellite images, and (ii) estimation of galaxy distances based on imaging data (photometric redshifts).
Federated learning has recently gained significant attention and popularity due to its effectiveness in training machine learning models on distributed data privately. However, as in the single-node supervised learning setup, models trained in federated learning suffer from vulnerability to imperceptible input transformations known as adversarial attacks, questioning their deployment in security-related applications. In this work, we study the interplay between federated training, personalization, and certified robustness. In particular, we deploy randomized smoothing, a widely-used and scalable certification method, to certify deep networks trained on a federated setup against input perturbations and transformations. We find that the simple federated averaging technique is effective in building not only more accurate, but also more certifiably-robust models, compared to training solely on local data. We further analyze personalization, a popular technique in federated training that increases the model's bias towards local data, on robustness. We show several advantages of personalization over both~(that is, only training on local data and federated training) in building more robust models with faster training. Finally, we explore the robustness of mixtures of global and local~(i.e. personalized) models, and find that the robustness of local models degrades as they diverge from the global model
Distributed sparse learning for high dimensional parameters has attached vast attentions due to its wide application in prediction and classification in diverse fields of machine learning. Existing distributed sparse regression usually takes an average way to ensemble the local results produced by distributed machines, which enjoys low communication cost but is statistical inefficient. To address this problem, we proposed a new Weighted AVerage Estimate (WAVE) for high-dimensional regressions. The WAVE is a solution to a weighted least-square loss with an adaptive $L_1$ penalty, in which the $L_1$ penalty controls the sparsity and the weight promotes the statistical efficiency. It can not only achieve a balance between the statistical and communication efficiency, but also reach a faster rate than the average estimate with a very low communication cost, requiring the local machines delivering two vectors to the master merely. The consistency of parameter estimation and model selection is also provided, which guarantees the safety of using WAVE in the distributed system. The consistency also provides a way to make hypothisis testing on the parameter. Moreover, WAVE is robust to the heterogeneous distributed samples with varied mean and covariance across machines, which has been verified by the asymptotic normality under such conditions. Other competitors, however, do not own this property. The effectiveness of WAVE is further illustrated by extensive numerical studies and real data analyses.
A central question in computational neuroscience is how structure determines function in neural networks. The emerging high-quality large-scale connectomic datasets raise the question of what general functional principles can be gleaned from structural information such as the distribution of excitatory/inhibitory synapse types and the distribution of synaptic weights. Motivated by this question, we developed a statistical mechanical theory of learning in neural networks that incorporates structural information as constraints. We derived an analytical solution for the memory capacity of the perceptron, a basic feedforward model of supervised learning, with constraint on the distribution of its weights. Our theory predicts that the reduction in capacity due to the constrained weight-distribution is related to the Wasserstein distance between the imposed distribution and that of the standard normal distribution. To test the theoretical predictions, we use optimal transport theory and information geometry to develop an SGD-based algorithm to find weights that simultaneously learn the input-output task and satisfy the distribution constraint. We show that training in our algorithm can be interpreted as geodesic flows in the Wasserstein space of probability distributions. We further developed a statistical mechanical theory for teacher-student perceptron rule learning and ask for the best way for the student to incorporate prior knowledge of the rule. Our theory shows that it is beneficial for the learner to adopt different prior weight distributions during learning, and shows that distribution-constrained learning outperforms unconstrained and sign-constrained learning. Our theory and algorithm provide novel strategies for incorporating prior knowledge about weights into learning, and reveal a powerful connection between structure and function in neural networks.
This chapter discusses the intricacies of cybersecurity agents' perception. It addresses the complexity of perception and illuminates how perception shapes and influences the decision-making process. It then explores the necessary considerations when crafting the world representation and discusses the power and bandwidth constraints of perception and the underlying issues of AICA's trust in perception. On these foundations, it provides the reader with a guide to developing perception models for AICA, discussing the trade-offs of each objective state approximation. The guide is written in the context of the CYST cybersecurity simulation engine, which aims to closely model cybersecurity interactions and can be used as a basis for developing AICA. Because CYST is freely available, the reader is welcome to try implementing and evaluating the proposed methods for themselves.
Regularized regression models are well studied and, under appropriate conditions, offer fast and statistically interpretable results. However, large data in many applications are heterogeneous in the sense of harboring distributional differences between latent groups. Then, the assumption that the conditional distribution of response Y given features X is the same for all samples may not hold. Furthermore, in scientific applications, the covariance structure of the features may contain important signals and its learning is also affected by latent group structure. We propose a class of mixture models for paired data (X, Y) that couples together the distribution of X (using sparse graphical models) and the conditional Y | X (using sparse regression models). The regression and graphical models are specific to the latent groups and model parameters are estimated jointly (hence the name "regularized joint mixtures"). This allows signals in either or both of the feature distribution and regression model to inform learning of latent structure and provides automatic control of confounding by such structure. Estimation is handled via an expectation-maximization algorithm, whose convergence is established theoretically. We illustrate the key ideas via empirical examples. An R package is available at //github.com/k-perrakis/regjmix.
Federated Learning (FL) enables collaborative model building among a large number of participants without the need for explicit data sharing. But this approach shows vulnerabilities when privacy inference attacks are applied to it. In particular, in the event of a gradient leakage attack, which has a higher success rate in retrieving sensitive data from the model gradients, FL models are at higher risk due to the presence of communication in their inherent architecture. The most alarming thing about this gradient leakage attack is that it can be performed in such a covert way that it does not hamper the training performance while the attackers backtrack from the gradients to get information about the raw data. Two of the most common approaches proposed as solutions to this issue are homomorphic encryption and adding noise with differential privacy parameters. These two approaches suffer from two major drawbacks. They are: the key generation process becomes tedious with the increasing number of clients, and noise-based differential privacy suffers from a significant drop in global model accuracy. As a countermeasure, we propose a mixed-precision quantized FL scheme, and we empirically show that both of the issues addressed above can be resolved. In addition, our approach can ensure more robustness as different layers of the deep model are quantized with different precision and quantization modes. We empirically proved the validity of our method with three benchmark datasets and found a minimal accuracy drop in the global model after applying quantization.
Users today expect more security from services that handle their data. In addition to traditional data privacy and integrity requirements, they expect transparency, i.e., that the service's processing of the data is verifiable by users and trusted auditors. Our goal is to build a multi-user system that provides data privacy, integrity, and transparency for a large number of operations, while achieving practical performance. To this end, we first identify the limitations of existing approaches that use authenticated data structures. We find that they fall into two categories: 1) those that hide each user's data from other users, but have a limited range of verifiable operations (e.g., CONIKS, Merkle2, and Proofs of Liabilities), and 2) those that support a wide range of verifiable operations, but make all data publicly visible (e.g., IntegriDB and FalconDB). We then present TAP to address the above limitations. The key component of TAP is a novel tree data structure that supports efficient result verification, and relies on independent audits that use zero-knowledge range proofs to show that the tree is constructed correctly without revealing user data. TAP supports a broad range of verifiable operations, including quantiles and sample standard deviations. We conduct a comprehensive evaluation of TAP, and compare it against two state-of-the-art baselines, namely IntegriDB and Merkle2, showing that the system is practical at scale.
As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models is facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol design has been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct the first comprehensive survey on this topic. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) poisoning attacks and defenses against robustness; 3) inference attacks and defenses against privacy, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy-preserving federated learning.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.