Zoonotic disease transmission between animals and humans is a growing risk and the agricultural context acts as a likely point of transition, with individual heterogeneity acting as an important contributor. Thus, understanding the dynamics of disease spread in the wildlife-livestock interface is crucial for mitigating these risks of transmission. Specifically, the interactions between pigeons and in-door cows at dairy farms can lead to significant disease transmission and economic losses for farmers; putting livestock, adjacent human populations, and other wildlife species at risk. In this paper, we propose a novel spatio-temporal multi-pathogen model with continuous spatial movement. The model expands on the Susceptible-Exposed-Infected-Recovered-Dead (SEIRD) framework and accounts for both within-species and cross-species transmission of pathogens, as well as the exploration-exploitation movement dynamics of pigeons, which play a critical role in the spread of infection agents. In addition to model formulation, we also implement it as an agent-based simulation approach and use empirical field data to investigate different biologically realistic scenarios, evaluating the effect of various parameters on the epidemic spread. Namely, in agreement with theoretical expectations, the model predicts that the heterogeneity of the pigeons' movement dynamics can drastically affect both the magnitude and stability of outbreaks. In addition, joint infection by multiple pathogens can have an interactive effect unobservable in single-pathogen SIR models, reflecting a non-intuitive inhibition of the outbreak. Our findings highlight the impact of heterogeneity in host behavior on their pathogens and allow realistic predictions of outbreak dynamics in the multi-pathogen wildlife-livestock interface with consequences to zoonotic diseases in various systems.
The importance of indoor human mobility in the transmission dynamics of respiratory infectious diseases has been acknowledged. Previous studies have predominantly addressed a single type of mobility behavior such as queueing and a series of behaviors under specific scenarios. However, these studies ignore the abstraction of mobility behavior in various scenes and the critical examination of how these abstracted behaviors impact disease propagation. To address these problems, this study considers people's mobility behaviors in a general scenario, abstracting them into two main categories: crowding behavior, related to the spatial aspect, and stopping behavior, related to the temporal aspect. Accordingly, this study investigates their impacts on disease spreading and the impact of individual spatio-temporal distribution resulting from these mobility behaviors on epidemic transmission. First, a point of interest (POI) method is introduced to quantify the crowding-related spatial POI factors (i.e., the number of crowdings and the distance between crowdings) and stopping-related temporal POI factors (i.e., the number of stoppings and the duration of each stopping). Besides, a personal space determined with Voronoi diagrams is used to construct the individual spatio-temporal distribution factor. Second, two indicators (i.e., the daily number of new cases and the average exposure risk of people) are applied to quantify epidemic transmission. These indicators are derived from a fundamental model which accurately predicts disease transmission between moving individuals. Third, a set of 200 indoor scenarios is constructed and simulated to help determine variable values. Concurrently, the influences and underlying mechanisms of these behavioral factors on disease transmission are examined using structural equation modeling and causal inference modeling......
Atherosclerosis, a chronic inflammatory disease affecting the large arteries, presents a global health risk. Accurate analysis of diagnostic images, like computed tomographic angiograms (CTAs), is essential for staging and monitoring the progression of atherosclerosis-related conditions, including peripheral arterial disease (PAD). However, manual analysis of CTA images is time-consuming and tedious. To address this limitation, we employed a deep learning model to segment the vascular system in CTA images of PAD patients undergoing femoral endarterectomy surgery and to measure vascular calcification from the left renal artery to the patella. Utilizing proprietary CTA images of 27 patients undergoing femoral endarterectomy surgery provided by Prisma Health Midlands, we developed a Deep Neural Network (DNN) model to first segment the arterial system, starting from the descending aorta to the patella, and second, to provide a metric of arterial calcification. Our designed DNN achieved 83.4% average Dice accuracy in segmenting arteries from aorta to patella, advancing the state-of-the-art by 0.8%. Furthermore, our work is the first to present a robust statistical analysis of automated calcification measurement in the lower extremities using deep learning, attaining a Mean Absolute Percentage Error (MAPE) of 9.5% and a correlation coefficient of 0.978 between automated and manual calcification scores. These findings underscore the potential of deep learning techniques as a rapid and accurate tool for medical professionals to assess calcification in the abdominal aorta and its branches above the patella. The developed DNN model and related documentation in this project are available at GitHub page at //github.com/pip-alireza/DeepCalcScoring.
Neural radiance fields are capable of reconstructing high-quality drivable human avatars but are expensive to train and render. To reduce consumption, we propose Animatable 3D Gaussian, which learns human avatars from input images and poses. We extend 3D Gaussians to dynamic human scenes by modeling a set of skinned 3D Gaussians and a corresponding skeleton in canonical space and deforming 3D Gaussians to posed space according to the input poses. We introduce hash-encoded shape and appearance to speed up training and propose time-dependent ambient occlusion to achieve high-quality reconstructions in scenes containing complex motions and dynamic shadows. On both novel view synthesis and novel pose synthesis tasks, our method outperforms existing methods in terms of training time, rendering speed, and reconstruction quality. Our method can be easily extended to multi-human scenes and achieve comparable novel view synthesis results on a scene with ten people in only 25 seconds of training.
Large statically indeterminate truss and frame structures exhibit complex load-bearing behavior, and redundancy matrices are helpful for their analysis and design. Depending on the task, the full redundancy matrix or only its diagonal entries are required. The standard computation procedure has a high computational effort. Many structures fall in the category of moderately redundant, i.e., the ratio of the statical indeterminacy to the number of all load-carrying modes of all elements is less one half. This paper proposes a closed-form expression for redundancy contributions that is computationally efficient for moderately redundant systems. The expression is derived via a factorization of the redundancy matrix that is based on singular value decomposition. Several examples illustrate the behavior of the method for increasing size of systems and, where applicable, for increasing degree of statical indeterminacy.
With the increasingly widespread adoption of AI in healthcare, maintaining the accuracy and reliability of AI models in clinical practice has become crucial. In this context, we introduce novel methods for monitoring the performance of radiology AI classification models in practice, addressing the challenges of obtaining real-time ground truth for performance monitoring. We propose two metrics - predictive divergence and temporal stability - to be used for preemptive alerts of AI performance changes. Predictive divergence, measured using Kullback-Leibler and Jensen-Shannon divergences, evaluates model accuracy by comparing predictions with those of two supplementary models. Temporal stability is assessed through a comparison of current predictions against historical moving averages, identifying potential model decay or data drift. This approach was retrospectively validated using chest X-ray data from a single-center imaging clinic, demonstrating its effectiveness in maintaining AI model reliability. By providing continuous, real-time insights into model performance, our system ensures the safe and effective use of AI in clinical decision-making, paving the way for more robust AI integration in healthcare
Interactive segmentation is a crucial research area in medical image analysis aiming to boost the efficiency of costly annotations by incorporating human feedback. This feedback takes the form of clicks, scribbles, or masks and allows for iterative refinement of the model output so as to efficiently guide the system towards the desired behavior. In recent years, deep learning-based approaches have propelled results to a new level causing a rapid growth in the field with 121 methods proposed in the medical imaging domain alone. In this review, we provide a structured overview of this emerging field featuring a comprehensive taxonomy, a systematic review of existing methods, and an in-depth analysis of current practices. Based on these contributions, we discuss the challenges and opportunities in the field. For instance, we find that there is a severe lack of comparison across methods which needs to be tackled by standardized baselines and benchmarks.
There is growing concern that the potential of black box AI may exacerbate health-related disparities and biases such as gender and ethnicity in clinical decision-making. Biased decisions can arise from data availability and collection processes, as well as from the underlying confounding effects of the protected attributes themselves. This work proposes a machine learning-based orthogonal approach aiming to analyze and suppress the effect of the confounder through discriminant dimensionality reduction and orthogonalization of the protected attributes against the primary attribute information. By doing so, the impact of the protected attributes on disease diagnosis can be realized, undesirable feature correlations can be mitigated, and the model prediction performance can be enhanced.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.