亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The importance of indoor human mobility in the transmission dynamics of respiratory infectious diseases has been acknowledged. Previous studies have predominantly addressed a single type of mobility behavior such as queueing and a series of behaviors under specific scenarios. However, these studies ignore the abstraction of mobility behavior in various scenes and the critical examination of how these abstracted behaviors impact disease propagation. To address these problems, this study considers people's mobility behaviors in a general scenario, abstracting them into two main categories: crowding behavior, related to the spatial aspect, and stopping behavior, related to the temporal aspect. Accordingly, this study investigates their impacts on disease spreading and the impact of individual spatio-temporal distribution resulting from these mobility behaviors on epidemic transmission. First, a point of interest (POI) method is introduced to quantify the crowding-related spatial POI factors (i.e., the number of crowdings and the distance between crowdings) and stopping-related temporal POI factors (i.e., the number of stoppings and the duration of each stopping). Besides, a personal space determined with Voronoi diagrams is used to construct the individual spatio-temporal distribution factor. Second, two indicators (i.e., the daily number of new cases and the average exposure risk of people) are applied to quantify epidemic transmission. These indicators are derived from a fundamental model which accurately predicts disease transmission between moving individuals. Third, a set of 200 indoor scenarios is constructed and simulated to help determine variable values. Concurrently, the influences and underlying mechanisms of these behavioral factors on disease transmission are examined using structural equation modeling and causal inference modeling......

相關內容

Mapping out reaction pathways and their corresponding activation barriers is a significant aspect of molecular simulation. Given their inherent complexity and nonlinearity, even generating a initial guess of these paths remains a challenging problem. Presented in this paper is an innovative approach that utilizes neural networks to generate initial guess for these reaction pathways. The proposed method is initiated by inputting the coordinates of the initial state, followed by progressive alterations to its structure. This iterative process culminates in the generation of the approximate representation of the reaction path and the coordinates of the final state. The application of this method extends to complex reaction pathways illustrated by organic reactions. Training was executed on the Transition1x dataset, an organic reaction pathway dataset. The results revealed generation of reactions that bore substantial similarities with the corresponding test data. The method's flexibility allows for reactions to be generated either to conform to predetermined conditions or in a randomized manner.

A number of life threatening neuro-degenerative disorders had degraded the quality of life for the older generation in particular. Dementia is one such symptom which may lead to a severe condition called Alzheimer's disease if not detected at an early stage. It has been reported that the progression of such disease from a normal stage is due to the change in several parameters inside the human brain. In this paper, an innovative metaheuristic algorithms based ViT model has been proposed for the identification of dementia at different stage. A sizeable number of test data have been utilized for the validation of the proposed scheme. It has also been demonstrated that our model exhibits superior performance in terms of accuracy, precision, recall as well as F1-score.

The diagnosis of autism spectrum disorder (ASD) is a complex, challenging task as it depends on the analysis of interactional behaviors by psychologists rather than the use of biochemical diagnostics. In this paper, we present a modeling approach to ASD diagnosis by analyzing acoustic/prosodic and linguistic features extracted from diagnostic conversations between a psychologist and children who either are typically developing (TD) or have ASD. We compare the contributions of different features across a range of conversation tasks. We focus on finding a minimal set of parameters that characterize conversational behaviors of children with ASD. Because ASD is diagnosed through conversational interaction, in addition to analyzing the behavior of the children, we also investigate whether the psychologist's conversational behaviors vary across diagnostic groups. Our results can facilitate fine-grained analysis of conversation data for children with ASD to support diagnosis and intervention.

Optimization of DR-submodular functions has experienced a notable surge in significance in recent times, marking a pivotal development within the domain of non-convex optimization. Motivated by real-world scenarios, some recent works have delved into the maximization of non-monotone DR-submodular functions over general (not necessarily down-closed) convex set constraints. Up to this point, these works have all used the minimum $\ell_\infty$ norm of any feasible solution as a parameter. Unfortunately, a recent hardness result due to Mualem \& Feldman~\cite{mualem2023resolving} shows that this approach cannot yield a smooth interpolation between down-closed and non-down-closed constraints. In this work, we suggest novel offline and online algorithms that provably provide such an interpolation based on a natural decomposition of the convex body constraint into two distinct convex bodies: a down-closed convex body and a general convex body. We also empirically demonstrate the superiority of our proposed algorithms across three offline and two online applications.

Adaptive experiment is widely adopted to estimate conditional average treatment effect (CATE) in clinical trials and many other scenarios. While the primary goal in experiment is to maximize estimation accuracy, due to the imperative of social welfare, it's also crucial to provide treatment with superior outcomes to patients, which is measured by regret in contextual bandit framework. These two objectives often lead to contrast optimal allocation mechanism. Furthermore, privacy concerns arise in clinical scenarios containing sensitive data like patients health records. Therefore, it's essential for the treatment allocation mechanism to incorporate robust privacy protection measures. In this paper, we investigate the tradeoff between loss of social welfare and statistical power in contextual bandit experiment. We propose a matched upper and lower bound for the multi-objective optimization problem, and then adopt the concept of Pareto optimality to mathematically characterize the optimality condition. Furthermore, we propose differentially private algorithms which still matches the lower bound, showing that privacy is "almost free". Additionally, we derive the asymptotic normality of the estimator, which is essential in statistical inference and hypothesis testing.

We present a result according to which certain functions of covariance matrices are maximized at scalar multiples of the identity matrix. This is used to show that experimental designs that are optimal under an assumption of independent, homoscedastic responses can be minimax robust, in broad classes of alternate covariance structures. In particular it can justify the common practice of disregarding possible dependence, or heteroscedasticity, at the design stage of an experiment.

Previous research has shown that the temporal dynamics of human activity recorded by accelerometers share a similar structure with music. This opens the possibility to use musical sonification of motion data as a means of raising awareness of an individuals own daily physical activity and promote healthy activity behaviour, granted that human activity and music also share similar temporal structure. In this study a method was developed for quantifying the daily structure of human activity using multigranular temporal segmentation and applying it to produce musical sonifications. To that extent, two accelerometry recordings of physical activity were selected from a dataset, such that one shows more physical activity than the other. These data were segmented in different timescales so that segmentation boundaries at a given timescale have a corresponding boundary at a finer timescale, occurring at the same point in time. These properties are useful to display the hierarchical structure of daily events embedded in larger events, which is akin to musical structure. The segmented physical activity data for one day was mapped to musical sounds, resulting in two short musical pieces, one for each subject. A survey measured the extent to which people would identify the piece corresponding to the most active subject, resulting in a majority of correct answers. We propose that this method has potential to be a valuable and innovative technique for behavioural change. We discuss its potential to aid in interventions for behavioural change towards reducing sedentary behaviour and increasing physical activity.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

北京阿比特科技有限公司