亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a novel domain generalization technique, referred to as Randomized Adversarial Style Perturbation (RASP), which is motivated by the observation that the characteristics of each domain are captured by the feature statistics corresponding to style. The proposed algorithm perturbs the style of a feature in an adversarial direction towards a randomly selected class, and makes the model learn against being misled by the unexpected styles observed in unseen target domains. While RASP is effective to handle domain shifts, its naive integration into the training procedure might degrade the capability of learning knowledge from source domains because it has no restriction on the perturbations of representations. This challenge is alleviated by Normalized Feature Mixup (NFM), which facilitates the learning of the original features while achieving robustness to perturbed representations via their mixup during training. We evaluate the proposed algorithm via extensive experiments on various benchmarks and show that our approach improves domain generalization performance, especially in large-scale benchmarks.

相關內容

Current adversarial attacks against speaker recognition systems (SRSs) require either white-box access or heavy black-box queries to the target SRS, thus still falling behind practical attacks against proprietary commercial APIs and voice-controlled devices. To fill this gap, we propose QFA2SR, an effective and imperceptible query-free black-box attack, by leveraging the transferability of adversarial voices. To improve transferability, we present three novel methods, tailored loss functions, SRS ensemble, and time-freq corrosion. The first one tailors loss functions to different attack scenarios. The latter two augment surrogate SRSs in two different ways. SRS ensemble combines diverse surrogate SRSs with new strategies, amenable to the unique scoring characteristics of SRSs. Time-freq corrosion augments surrogate SRSs by incorporating well-designed time-/frequency-domain modification functions, which simulate and approximate the decision boundary of the target SRS and distortions introduced during over-the-air attacks. QFA2SR boosts the targeted transferability by 20.9%-70.7% on four popular commercial APIs (Microsoft Azure, iFlytek, Jingdong, and TalentedSoft), significantly outperforming existing attacks in query-free setting, with negligible effect on the imperceptibility. QFA2SR is also highly effective when launched over the air against three wide-spread voice assistants (Google Assistant, Apple Siri, and TMall Genie) with 60%, 46%, and 70% targeted transferability, respectively.

Iris presentation attack detection (PAD) has achieved great success under intra-domain settings but easily degrades on unseen domains. Conventional domain generalization methods mitigate the gap by learning domain-invariant features. However, they ignore the discriminative information in the domain-specific features. Moreover, we usually face a more realistic scenario with only one single domain available for training. To tackle the above issues, we propose a Single Domain Dynamic Generalization (SDDG) framework, which simultaneously exploits domain-invariant and domain-specific features on a per-sample basis and learns to generalize to various unseen domains with numerous natural images. Specifically, a dynamic block is designed to adaptively adjust the network with a dynamic adaptor. And an information maximization loss is further combined to increase diversity. The whole network is integrated into the meta-learning paradigm. We generate amplitude perturbed images and cover diverse domains with natural images. Therefore, the network can learn to generalize to the perturbed domains in the meta-test phase. Extensive experiments show the proposed method is effective and outperforms the state-of-the-art on LivDet-Iris 2017 dataset.

When comparing two independent groups, shift functions are basically techniques that compare multiple quantiles rather than a single measure of location, the goal being to get a more detailed understanding of how the distributions differ. Various versions have been proposed and studied. This paper deals with extensions of these methods to main effects and interactions in a between-by-between, 2-by-2 design. Two approaches are studied, one that compares the deciles of the distributions, and one that has a certain connection to the Wilcoxon-Mann-Whitney method. For both methods, we propose an implementation using the Harrell-Davis quantile estimator, used in conjunction with a percentile bootstrap approach. We report results of simulations of false and true positive rates.

In reality, rain and fog are often present at the same time, which can greatly reduce the clarity and quality of the scene image. However, most unsupervised single image deraining methods mainly focus on rain streak removal by disregarding the fog, which leads to low-quality deraining performance. In addition, the samples are rather homogeneous generated by these methods and lack diversity, resulting in poor results in the face of complex rain scenes. To address the above issues, we propose a novel Asymetric Cycle Generative and Adversarial framework (ACGF) for single image deraining that trains on both synthetic and real rainy images while simultaneously capturing both rain streaks and fog features. ACGF consists of a Rain-fog2Clean (R2C) transformation block and a Clean2Rain-fog (C2R) transformation block. The former consists of parallel rain removal path and rain-fog feature extraction path by the rain and derain-fog network and the attention rain-fog feature extraction network (ARFE) , while the latter only contains a synthetic rain transformation path. In rain-fog feature extraction path, to better characterize the rain-fog fusion feature, we employ an ARFE to exploit the self-similarity of global and local rain-fog information by learning the spatial feature correlations. Moreover, to improve the translational capacity of C2R and the diversity of models, we design a rain-fog feature decoupling and reorganization network (RFDR) by embedding a rainy image degradation model and a mixed discriminator to preserve richer texture details in synthetic rain conversion path. Extensive experiments on benchmark rain-fog and rain datasets show that ACGF outperforms state-of-the-art deraining methods. We also conduct defogging performance evaluation experiments to further demonstrate the effectiveness of ACGF.

In overhead image segmentation tasks, including additional spectral bands beyond the traditional RGB channels can improve model performance. However, it is still unclear how incorporating this additional data impacts model robustness to adversarial attacks and natural perturbations. For adversarial robustness, the additional information could improve the model's ability to distinguish malicious inputs, or simply provide new attack avenues and vulnerabilities. For natural perturbations, the additional information could better inform model decisions and weaken perturbation effects or have no significant influence at all. In this work, we seek to characterize the performance and robustness of a multispectral (RGB and near infrared) image segmentation model subjected to adversarial attacks and natural perturbations. While existing adversarial and natural robustness research has focused primarily on digital perturbations, we prioritize on creating realistic perturbations designed with physical world conditions in mind. For adversarial robustness, we focus on data poisoning attacks whereas for natural robustness, we focus on extending ImageNet-C common corruptions for fog and snow that coherently and self-consistently perturbs the input data. Overall, we find both RGB and multispectral models are vulnerable to data poisoning attacks regardless of input or fusion architectures and that while physically realizable natural perturbations still degrade model performance, the impact differs based on fusion architecture and input data.

Rehearsal, seeking to remind the model by storing old knowledge in lifelong learning, is one of the most effective ways to mitigate catastrophic forgetting, i.e., biased forgetting of previous knowledge when moving to new tasks. However, the old tasks of the most previous rehearsal-based methods suffer from the unpredictable domain shift when training the new task. This is because these methods always ignore two significant factors. First, the Data Imbalance between the new task and old tasks that makes the domain of old tasks prone to shift. Second, the Task Isolation among all tasks will make the domain shift toward unpredictable directions; To address the unpredictable domain shift, in this paper, we propose Multi-Domain Multi-Task (MDMT) rehearsal to train the old tasks and new task parallelly and equally to break the isolation among tasks. Specifically, a two-level angular margin loss is proposed to encourage the intra-class/task compactness and inter-class/task discrepancy, which keeps the model from domain chaos. In addition, to further address domain shift of the old tasks, we propose an optional episodic distillation loss on the memory to anchor the knowledge for each old task. Experiments on benchmark datasets validate the proposed approach can effectively mitigate the unpredictable domain shift.

Adversarial attack is a technique for deceiving Machine Learning (ML) models, which provides a way to evaluate the adversarial robustness. In practice, attack algorithms are artificially selected and tuned by human experts to break a ML system. However, manual selection of attackers tends to be sub-optimal, leading to a mistakenly assessment of model security. In this paper, a new procedure called Composite Adversarial Attack (CAA) is proposed for automatically searching the best combination of attack algorithms and their hyper-parameters from a candidate pool of \textbf{32 base attackers}. We design a search space where attack policy is represented as an attacking sequence, i.e., the output of the previous attacker is used as the initialization input for successors. Multi-objective NSGA-II genetic algorithm is adopted for finding the strongest attack policy with minimum complexity. The experimental result shows CAA beats 10 top attackers on 11 diverse defenses with less elapsed time (\textbf{6 $\times$ faster than AutoAttack}), and achieves the new state-of-the-art on $l_{\infty}$, $l_{2}$ and unrestricted adversarial attacks.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司